

DRIVE MODEL: ED3L-□□□MA

About this Manual

Purpose

This manual provides the information required for the Selection, Wiring, Connection, Settings, Trial Operation, Tuning and Functions of the Summa ED3L Series AC Servo Drive with pulse references (referred to as ED3L).

Read and understand this manual to ensure correct usage of the product.

Terms and Abbreviations

Terms that may be used in this manual are defined as follows.

Term	Meaning	
Motor	The Rotary Servo Motor	
Drive	A Servo Drive, which is used for controlling the Rotary Servo Motor	
Servo System	A Servo Control System consisting of a master controller, drive, motor and peripheral devices	
Servo ON	Supplying power to the Motor	
Servo OFF	Not supplying power to the Motor	
ESView	The software tool for setting up and adjusting the drive, which is installed in the PC	

Abbreviations that may be used in describing EhterCAT or CANopen as well as their meanings are defined as follows.

Abbreviation	Meaning	
APRD	Auto-increment Physical Read	
APWR	Auto-increment Physical Write	
APRW	Auto-increment Physical Read/Write	
ARMW	Auto-increment Physical Read/Multiple Write	
BRD	Boardcast Read	
BRW	Boardcast Read/Write	
BWR	Boardcast Write	
CiA	CAN in Automation	
СоЕ	CAN application protocol over EtherCAT	
DC	Distributed Clocks	
EEPROM	Electrically Erasable Programmable Read Only Memory	
ESC	EtherCAT Slave Controller	

Abbreviation	Meaning	
ESI	EtherCAT Slave Information	
ESM	EtherCAT State Machine	
FMMU	Fieldbus Memory Management Unit	
FPRD	Configured Address Physical Read	
FPWR	Configured Address Physical Write	
FPRW	Configured Address Physical ReadWrite	
FRMW	Configured Address Physical Read Multiple Write	
LRD	Logical memory Read	
LWR	Logical memory Write	
LRW	Logical memory ReadWrite	
OD	Object Dictionary	
OP	Operational state of EtherCAT state machine	
PDO	Process Data Object	
PREOP	Pre-Operational state of EtherCAT state machine	
RxPDO	Receive PDO, i.e. the process data that the ESC will receive	
SAFEOP	Safe-Operational state of EtherCAT state machine	
SDO	Service Data Object	
SyncManager	Synchronization Manager	
TxPDO	Transmit PDO, i.e. the process data to be sent by the ESC	

Data types and scopes that may be used in this manual are defined as follows.

Abbreviation	Data type	Scope
INT8	Signed 8 bit	-128~ +127
INT16	Signed 16 bit	<i>−</i> 32768~ + 32767
INT32	Signed 32 bit	- 2147483648~ + 2147483627
UINT8	Unsigned 8 bit	0~255
UINT16	Unsigned 16 bit	0~65535
UINT32	Unsigned 32 bit	0~4294967295
STRING	String value	-

Symbols

The symbols that may be found in this document are defined as follows.

Symbol	Description	
1	Indicates a hazard with a high level of risk that, if not avoided, will result in death or serious injury.	
WARNING	Indicates a hazard with a medium or low level of risk which, if not avoided, could result in minor or moderate injury.	
CAUTION	Indicates a potentially hazardous situation that, if not avoided, could cause equipment damage, data loss, and performance degradation, or unexpected results.	
IMPORTANT	Indicates precautions or restrictions that must be observed. Also indicates alarm displays and other precautions that will not result in machine damage.	
NOTE NOTE	Provides additional information to emphasize or supplement important points of the main text.	

The names of reverse signals (ones that are taken effect when low) are written with a forward slash (/) before the signal abbreviation. For example:

$$\overline{S-ON} = /S-ON$$
 $\overline{P-CON} = /P-CON$

Parameters are referenced as PnXXX where XXX refers to a unique number. Some parameters have multiple functions encoded within a single parameter. For these parameters, sub-indices are used to reference the multiple functions.

For example:

- Pn112 Speed Feedforward is a single value without any sub-indices
- Pn000 Basic Function Selection 0 is made up of 4 sub-indexes describing different functions
 - Pn000.0 Servo ON
 - Pn000.1 Forward Drive Prohibit Input (P-OT)
 - Pn000.2 Reverse Drive Prohibit Input (N-OT)
 - Pn000.3 Reserved parameter (Do not change)

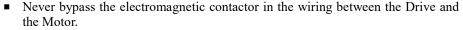
Safety Precautions

General Precautions

- Never remove covers, cables, connectors, or optional devices while power is being supplied to the Drive.
- Never connect a three-phase power supply to the terminals U, V, and W of the driver.
- Wait for five minutes after turning the power supply OFF and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Never touch the power supply terminals after turning OFF the power supply while the CHARGE lamp is lit, because high voltages may still be present in the Drive.

- Use a power supply that is appropriate for the product, check number of phases, voltage, frequency, and AC/DC type.
- Connect the ground terminals on the Drive and Motor to ground poles according to local electrical codes.
- Never damage, pull on, apply excessive force to, place heavy objects on, or pinch cables
- Never attempt to disassemble, repair, or modify the product.
- Make sure that the device in an emergency stop state at any time when the product has been connected to the machine and ready for the operation.
- Never touch inside the Drive.
- The Drive heat sinks, regenerative resistors, Motor, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components.
- For the control power supply, use a power supply device with double insulation or reinforced insulation.

- Never use the product in an environment that is subject to water, corrosive gases, or flammable gases, or near flammable materials.
- Never attempt to use a Drive or Motor that is damaged or that has missing parts.
- Install external emergency stop circuits that shut OFF the power supply and stops operation immediately when an error occurs.
- In locations with poor power supply conditions, install the necessary protective devices (such as AC reactors) to ensure that the input power is supplied within the specified voltage range.
- Always use a Noise Filter to minimize the effects of electromagnetic interference.
- Always use a Motor and Drive in one of the specified combinations.
- Never touch a Drive or Motor with wet hands.


Storage Precautions

- Follow all instructions on the packages, and never place an excessive load on the product during storage.
- Never install or store the product in any of the following locations:
 - -- locations that are subject to direct sunlight.
 - -- locations that are subject to ambient temperatures exceed product specifications.
 - -- locations that are subject to relative humidity exceed product specifications.
 - -- locations that are subject to corrosive or flammable gases.
 - -- locations that are subject to dust, salts, or iron powder.
 - -- locations that are subject to water, oil, or chemicals.
 - -- locations that are subject to vibration or shock exceeds product specifications.
 - -- locations that are subject to radiation.

Installation Precautions

- Install the Drive in a control cabinet that provides fire and electrical protection.
- Install the Drive and Motor in a way that will support their mass.
- Never install or store the product in any of the following locations:
 - -- locations that are subject to direct sunlight.
 - -- locations that are subject to ambient temperatures exceed product specifications.
 - -- locations that are subject to relative humidity exceed product specifications.
 - -- locations that are subject to corrosive or flammable gases.
 - -- locations that are subject to dust, salts, or iron powder.
 - -- locations that are subject to water, oil, or chemicals.
 - -- locations that are subject to vibration or shock exceeds product specifications.
 - -- locations that are subject to radiation.
- Never allow any foreign matter to enter a Drive or a Motor with a Cooling Fan.
- Never cover the outlet from cooling fan of Drive or Motor.
- Never step on or place a heavy object on the product.
- Install the Drive in the specified orientation.
- Provide the specified clearances between the Drive and the control cabinet as well as with other devices.

Wiring Precautions

- Firmly connect the power terminal to the Motor terminal.
- Provide an adequate air gap around the Drive installation.
- Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Signal Cables and Encoder Cables.
- The wiring length of the encoder is up to 20 meters.
- Minimize the frequency that the power supply is turned ON and OFF.

Operation Precautions

- In order to prevent accidents, please test the Motor with no load (not connected to the Drive shaft).
- When starting to operate on the supporting machine, set the user parameters that match the machine in advance.
- Note that the signals for the Forward Drive Prohibit (P-OT) and the Reverse Drive Prohibit (N-OT) are disabled during JOG operation.

- When overtravel occurs, the power supply to the Motor is turned OFF and the brake is released. If the Motor is used to drive a vertical load, set the Motor to enter a 'zero-clamped' state after the Motor stops. Also, install safety devices (such as an external brake or counterweight) to prevent the moving parts of the machine from falling.
- If not using auto-tuning, make sure that an appropriate moment of inertia ratio is setup to avoid vibration.
- If an alarm occurs, reset it after troubleshooting the cause and ensuring safety.
- Never use the brake of the Motor for normal braking.

Maintenance Precautions

- Wiring and inspections must be performed only by qualified engineers.
- Disconnect all connections to the Drive when testing the insulation resistance of the Drive.

- Never use gasoline, thinner, alcohol, acid or alkaline detergent to avoid discoloration or damage to the casing.
- When replacing the Drive, transfer the user parameters from the replaced Drive to new Drive.
- Never change the wiring while the power is on.
- Never disassemble the Motor without permission.

Disposal Precautions

When disposing of the product, treat it as ordinary industrial waste. However, local ordinances and national laws must be observed. Implement all labeling and warnings as required.

Contents

About this Manual	i
Purpose	i
Terms and Abbreviations	i
Symbols	iii
Safety Precautions	iv
General Precautions	
Storage Precautions	V
Installation Precautions	
Wiring Precautions	
Operation Precautions	vi
Maintenance Precautions	vi
Disposal Precautions	vi
Contents	vii
Chapter 1 ED3L Servo Drive	
1.1 Product Features.	
1.2 Interpreting the Nameplate	
1.3 Model Designations	
1.4 Part Names	
1.5 Ratings and Specifications	
1.6 External Dimensions	
1.7 System Configuration	
Chapter 2 Installation	
2.1 Installation Precautions	
2.2 Mounting Types and Orientation	
2.3 Mounting Hole Dimensions	
2.4 Mounting Interval	
Chapter 3 Wiring and Connecting	
3.1 Precautions for Wiring	
3.1.1 General Precautions	
3.1.2 Countermeasures against Noise	
3.1.3 Recommended EMC Filters	
3.1.4 Grounding	
3.2 Basic Wiring Diagrams	
3.3 Terminals Arrangements	
3.4 Wiring the Power Supply to Drive	
3.4.1 Terminals Arrangement	
3.4.2 Wiring a Regenerative Resistor 3.4.3 Wiring Procedure	
3.4.4 Motor Connection Diagram.	
3.4.5 Motor Power Cable Description	3-23
3.4.6 Power Input Wiring Specifications	
3.4.7 Power Input Wiring Example	
3.5 Wiring the Encoder	
3.5.1 Connection Diagram	
3.5.3 Encoder Cable Wiring Specifications	
3.5.4 Battery Case Connection	

3.6 I/O Signal Connections	3-44
3.6.1 Signal Diagram	3-44
3.6.2 Pin Layout	
3.6.3 Wiring Description	
3.6.4 Holding Brake Wiring	
3.6.5 Touch Probe Wiring	
3.7 USB Communication Cable	
Chapter 4 Basic Settings	
4.1 Panel Operator	4-50
4.1.1 Key Names and Functions	
4.1.2 Basic Mode Selection	
4.1.3 Status Display Mode	
4.1.4 Parameter Setting Mode	
4.1.6 Utility Function Mode	
4.2 ESView V4	
4.2.1 Installation	
4.2.3 Edit Parameters	
4.2.4 Monitor.	
Chapter 5 Application Functions	
5.1 Power Supply	
5.2 Motor Rotation Direction	
5.3 Overtravel Limit	
5.3.1 Function Description	
5.3.2 Connecting the Overtravel Signal	
5.3.3 Enabling/Disabling the Overtravel Signal	
5.4 Motor Stopping Methods	
5.4.1 Motor Stop Methods for Gr.1 Alarms, Safety State and Se	
5.4.2 Motor Stop Methods for Overtravel	
5.4.4 Powers Probe Torque Limit Setting	
5.4.4 Reverse Brake Torque Limit Setting	
5.5 Holding Brake	
5.5.1 Function Description	
5.5.2 Brake Operating Sequence	
5.5.4 Output Timing of /BK Signal when Motor is Stopped	
5.5.5 Output Timing of /BK Signal when Motor is operating	
5.6 Encoder Settings	
5.6.1 Absolute Encoder Selection	
5.6.2 Encoder Alarm Resetting	
5.6.3 Multiturn Limit Setting	
5.6.4 Encoder pulse dividing output	
5.7 IO Signal Allocation	5-12
5.7.1 Input Signal Allocations	5-12
5.7.2 Output Signal Allocations	
5.8 Control Mode Selection	5-15
5.9 Speed Control	5-17
5.9.1 Setting speed control	
5.9.2 Adjustment of Speed Reference Offset:	5-18
5.9.3 Soft Start	5-20
5.9.4 Zero Clamp Function	5-21
5.9.5 Speed Coincidence Detection (/VCMP) Signal	
5.10 Position Control	5-23
5.10.1 Basic Settings of Position Control	
5.10.2 Function and Setting of Position Error Clear (/CLR) Sig	
5.10.3 Electronic Gear	5-27

5.10.4 Smoothing	
5.10.5 Positioning Completion (/COIN) Signal	
5.10.6 Reference Pulse Inhibit Function (INHIBIT)	
5.11 Torque Control	
5.11.1 Basic Settings of Torque Control	
5.11.2 Adjustment of Torque Reference Offset	
5.11.4 Speed Limit During Torque Control	
5.11.5 Internal Torque Contact Control	
5.12 Internally Set Speed Control	
5.12.1 Basic Settings of Internally Set Speed Control	
5.12.2 Speed Setting of Internally Set Speed Control	
5.12.3 Switching Internally Set Speed by Input Signal	
5.12.4 Running Example of Internally Set Speed Control	
5.13 PCP Control	5-41
5.13.1 PCP Control Selection	5-41
5.13.2 Paramter Setting of PCP Control	5-41
5.13.3 Contact Command Model	
5.13.4 Contact Trigger	
5.13.5 Software Limits	
5.13.6 Partial In-place Output	
5.13.7 When Overtravel Occurs	
5.14 Selection of Control Mode Combinations	
5.15 Torque Limit	
5.15.1 Internal Torque Limits	
5.15.2 External Torque Limits	
5.15.4 Torque Limit Confirmation Signals	
5.16 Homing	
5.16.1 Function Overview	
5.16.2 Related Parameters	
5.16.3 Selection of Homing Modes	
5.16.4 Allocating Homing Signals	
5.16.5 Homing Timing Sequence	5-58
5.17 Other Output Signals	5-61
5.17.1 Alarm Output Signal (/ALM)	5-61
5.17.2 Rotation Detection Output Signal (/TGON)	
5.17.3 Servo Ready (/S-RDY) Output Signal	5-62
Chapter 6 CANopen Communication	6-1
6.1 Wiring and Connection	6-1
6.2 CANopen Overview	6-3
6.2.1 CAN Identifier List	
6.2.2 Service Data Objects (SDO)	
6.2.3 Process Data Objects (PDO)	6-5
6.2.4 SYNC Message	
6.2.5 Emergency Message	
6.2.6 HEARTBEAT Message	
6.2.7 Network management (NMT service)	
6.3 Unit Conversion	
6.3.1 Parameters for Unit Conversion	
6.3.2 Position factor	
6.3.4 Acceleration factor	
6.4 Position Control Function	
6.5 Device Control	
6.5.1 Control State Machine	
6.5.2 Related Parameters of Device Control	
0.5.2 related 1 arameters of Device Collinor	0-20

6.5.3 Controlword	
6.5.4 Statusword	
6.5.5 Shutdown_option_code	
6.5.6 Disable_operation_option_code	
6.5.7 Quick_stop_option_code	
6.5.8 Halt_option_code	
6.5.9 Fault_reaction_option_code	
6.6 Control Mode	
6.7 HOMING MODE	
6.7.1 Control word of homing mode	
6.7.2 Status word of homing mode	
6.7.4 Homing Methods	
6.8 PROFILE VELOCITY MODE	
6.8.1 Flow Chart of Profile Velocaity Mode	
6.8.2 Control Word	
6.8.3 Status Word	
6.8.4 Related Parameters	6-48
6.9 PROFILE TORQUE MODE	6-52
6.9.1 Flow Chart of PROFILE TORQUE MODE	6-52
6.9.2 Control Word	
6.9.3 Status Word	
6.9.4 Related Parameters	
6.10 PROFILE POSITION MODE	
6.10.1 Flow Chart of PROFILE POSITION MODE	
6.10.2 Control Word	
6.10.3 Staus Word	
6.10.4 Related Parameters	
6.11 INTERPLATION POSITION MODE	
6.11.1 Flow Chart of INTERPLATION POSITION MODE	
6.11.2 Control Word	
6.11.4 Related Parameters	
6.11.5 Functional Description	
6.12 Torque Limit Function	
6.13 DIGITAL INPUT /OUTPUT	
6.14 Functions of TouchProbe	
6.15 Soft Limit Function	
Chapter 7 Trial Operation	
7.1 Preparations for Trail Operation	
7.2 Inspections and Confirmations	
7.3 Motor Operation without a Load	
7.3.1 Preparations	
7.3.2 Applicable Tools	
7.3.3 JOG Operation	
7.4 Motor Operation with a Load	
7.4.1 Precautions 7.4.2 Preparations 7.4.2 Preparat	
7.4.2 Preparations	
7.5 Program Jogging	
7.5.1 Preparations	
7.5.2 Operation Description	
7.5.3 Relevant Parameters	
7.5.4 Applicable Tools	
7.5.5 Operation Procedure	
Chapter 8 Tuning	8-1
-	

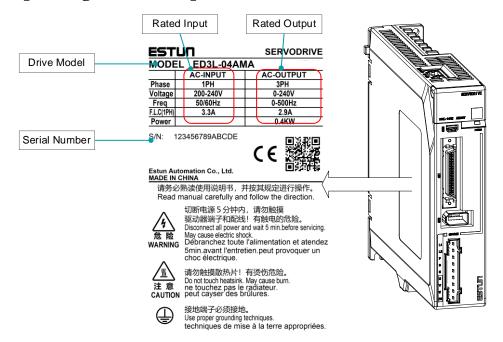
	8.1 Overview	8-1
	8.1.1 Basic Conception	8-1
	8.1.2 Control Block Diagram	
	8.1.3 Tuning Process	
	8.1.4 Precautions Before Tuning	
	8.2 Tuning Modes	
	8.2.1 Tuning-Less	
	8.2.2 One-Parameter Auto-Tuning	
	8.2.3 Manual Tuning	
	8.3 Tuning Tools	
	8.3.2 Auto-Tuning Tool	
	8.3.3 Manual-Tuning Tool	
	8.4 Feedback Speed Selection	
	8.5 Additional Adjustment Functions	
	8.5.1 Gain Switching	
	8.5.2 P/PI Switching	
	8.5.3 Feedforward	
	8.5.4 Friction Compensation	
	8.5.6 Model Following Control	
	8.6 Vibration Suppression	
	8.6.1 Notch Filter	
	8.6.2 IF (Intermediate Frequency) Vibration Suppression	
	8.6.3 Load Oscillation Suppression	
	8.6.4 Automatic Vibration Suppression	
	8.7 Diagnostic Tools	
	8.7.1 Load Inertia Identification	
	8.7.2 Mechanical Analysis	
	8.7.3 FFT	8-48
	8.7.4 Friction Analysis	8-50
Ch	apter 9 MODBUSCommunications	9-1
	9.1 Communication Wiring	9-1
	9.2 Setting Communication Parameters	9-1
	9.3 MODBUS Communication Protocol	
	9.3.1 Code Meaning	
	9.3.2 Communication Protocol Structure	9-3
	9.3.3 Communication Error Disposal	
	9.3.4 Data Communication Address of Servo State	9-9
Ch	apter 10 Alarm Displays	10-1
	10.1 Alarm Classifications	10-1
	10.2 Alarm Detailed	
	10.2.1 Gr.1 Warning	
	10.2.3 Warnings	
∩h	apter 11 Parameters	
_11	11.1 Interpreting the Parameter Lists	
	. •	
~-	11.2 Parameters Detailed	
Ch	apter 12 Object Dictionary	1 2- 1

Chapter 1 ED3L Servo Drive

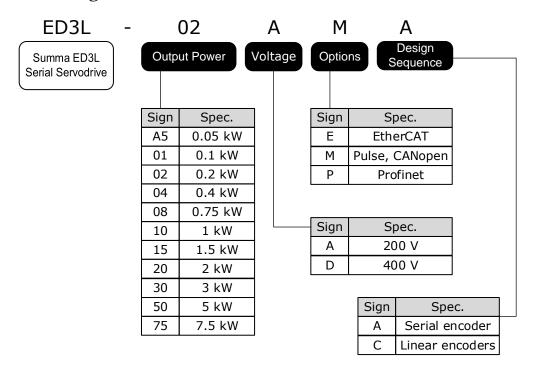
1.1 Product Features

As a new single-axis AC servo product from ESTUN, ED3L is designed with its excellent performance and practical control functions to create a complete set of solutions with the best cost performance for customers.

Matching with the EM3A, EMG, EM3G and EM3J servo motors, compatible with mainstream controllers, it offers high-speed, high-precision, and high-performance machine solutions.

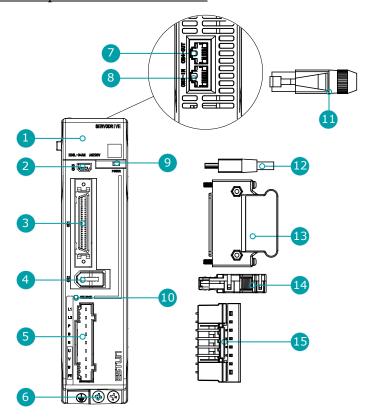

ED3L has the following outstanding features.

- CANopen supported
- Compact size
- Zero stacking gap installation
- 200 V ac from 50 W to 2 kW
- 400 V ac from 1.0KW to 7.5kW
- Compatible with servo motors EM3A, EMG, EM3G and EM3J


Optional 17-bit incremental encoder/17-bit absolute encoder (magnetic) and 20-bit incremental/23-bit absolute encoder (photoelectric)

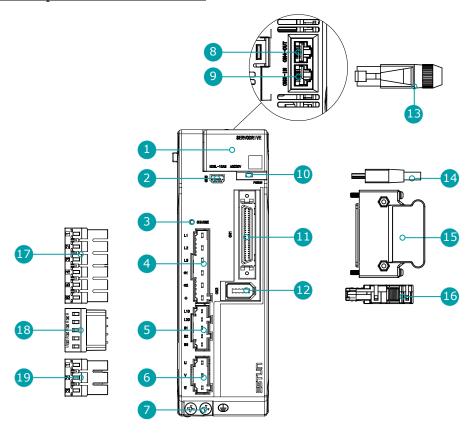
 Comprehensive tuning technology including: Auto-tuning function, adaptive vibration suppression, friction compensation

1.2 Interpreting the Nameplate



1.3 Model Designations

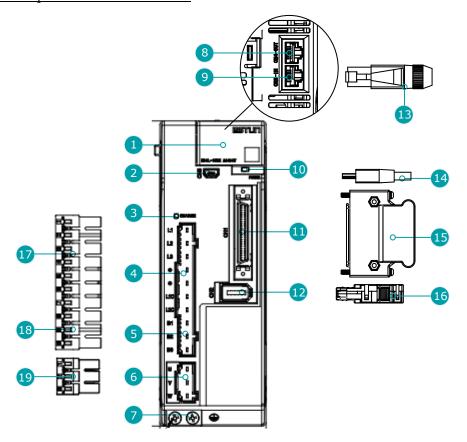
1.4 Part Names


200VAC Rated power from 50W to 400W

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings
2	USB Connector	Connects a computer for ESView V4
3	IO Signal Connector	Connects to sequence I/O signals
4	Encoder Connector	Connects to the encoder in the Motor
5	Main Circuit and Motor Connector	L1, L2: main power input terminals P, N: common DC bus terminals P, B: external regenerative resistor terminals U, V, W: motor power terminals PE: ground terminal
6	Grounding Terminal	Connects to the ground terminal of the Motor main circuit cable
7	External communication output indicators	Output connector of the external communication cable Note: A dust plug has been mounted at the factory.
8	External communication input indicators	Input connector of the external communication cable Note: A dust plug has been mounted at the factory.
9	POWER Indicator Lamp	Lit while the control circuit power is being supplied

No.	Name	Description
10	CHARGE Indicator Lamp	Lit while the main circuit power is being supplied Note: Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Never touch the main circuit or Motor terminals while this indicator is lit, in case the electric shock.
11	External communication Terminals	Standard RJ-45 terminal
12	USB Terminals	Standard Mini USB Type-B
13	IO Signal Terminals	Connection terminals for sequence IO signals
14	Encoder Terminals	Connection terminals for the encoder cable in the Motor
15	Main Circuit and Motor Terminals	Connection terminals for power input and motor power

200VAC Rated power from 750W to 2kW

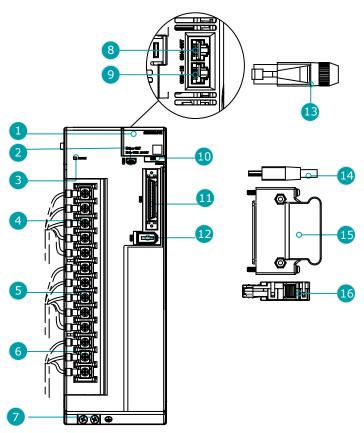

NOTE

The figure above shows that the rated power from 750W to 1kW. The appearance and components of the product rated at 1.5kW to 2kW are the similar.

1	No.	Name	Description
1		Panel Operator	A module for Servo status displays and parameter settings
2	2	USB Connector	Connects a computer for ESView V4

No.	Name	Description
3	CHARGE Indicator Lamp	Lit while the main circuit power is being supplied Note: Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Never touch the main circuit or Motor terminals while this indicator is lit, in case the electric shock.
4	Main Circuit Connector	 L1, L2, L3: main power input terminals ⊕1, ⊕2, ⊖: DC terminals
5	Control Circuit Connector	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor terminals
6	Motor Connector	Connects to a Motor main circuit cable
7	Grounding Terminal	Connects to the ground terminal of the Motor main circuit cable
8	External communication output indicators	Output connector of the external communication cable Note: A dust plug has been mounted at the factory.
9	External communication input indicators	Input connector of the external communication cable Note: A dust plug has been mounted at the factory.
10	POWER Indicator Lamp	Lit while the control circuit power is being supplied
11	IO Signal Connector	Connects to sequence I/O signals
12	Encoder Connector	Connects to the encoder in the Motor
13	External communication Terminals	Standard RJ-45 terminal
14	USB Terminals	Standard Mini USB Type-B
15	IO Signal Terminals	Connection terminals for sequence IO signals
16	Encoder Terminals	Connection terminals for the encoder cable in the Motor
17	Main Circuit Terminals	The connection terminals for the main circuit power supply
18	Control Circuit Terminals	The connection terminals for the control power supply
19	Motor Terminals	The connection terminals for the Motor main circuit cable

400VAC, rated power from 1kW to 5kW



The figure above shows an example of a product with a rated power of 1kW to 1.5kW. Products with a rated power of $2kW\sim3kW$ are similar in appearance and have the same components.

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings.
2	USB Connector	Socket for USB communication cable when using ESView V4 on PC.
3	CHARGE Indicator Lamp	Lights up when the main circuit is powered on. Note: If voltage remains in the capacitors inside the drive after the main circuit has been switched off, and the indicator lamp will be ON, do not touch the main circuit and motor terminals at this time to avoid electric shock.
4	Main Circuit Port	 L1, L2, L3: main power input terminals ⊕1, ⊕2, ⊖: DC connectors
5	Control Circuit Port	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor connectors
6	Motor Power Connection Port	Socket for motor power cable.
7	Grounding Terminal	Connected to the earth terminal of the motor power cable.
8	External Communication Output Connection Port	Socket for output signal connection of external communication cable.
9	External Communication Input Connection Port	Socket for input signal connection of external communication cable.

No.	Name	Description
10	POWER Indicator Lamp	Light up when the control circuit is powered on.
11	IO Signal Connection Port	Socket for IO signal connectors.
12	Encoder Connection Port	Socket for the encoder connectors of the motor.
13	External Communication Connector	Standard RJ-45 terminal.
14	USB Connector	Standard Mini USB Type-B.
15	IO Signal Connector	Connector for IO signal cables.
16	Encoder Connector	Connector for motor encoder cables.
17	Main Circuit Connector	Connector for the drive's main circuit cables.
18	Control Circuit Connector	Connector for the drive control circuit cables.
19	Motor Power Cable Connector	Connector for the motor power cables.

$\underline{400VAC}$, rated power from: $5kW\sim7.5kW$

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings.
2	USB Connector	Socket for USB communication cable when using ESView V4 on PC.

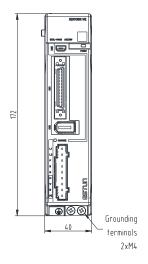
No.	Name	Description
3	CHARGE Indicator Lamp	Lights up when the main circuit is powered on. Note: If voltage remains in the capacitors inside the drive after the main circuit has been switched off, and the indicator lamp will be ON, do not touch the main circuit and motor terminals at this time to avoid electric shock.
4	Main Circuit Port	 L1, L2, L3: main power input terminals ⊕1, ⊕2, ⊖: DC connectors
5	Control Circuit Port	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor connectors
6	Motor Power Connection Port	Socket for motor power cable.
7	Grounding Terminal	Connected to the earth terminal of the motor power cable.
8	External Communication Output Connection Port	Socket for output signal connection of external communication cable.
9	External Communication Input Connection Port	Socket for input signal connection of external communication cable.
10	POWER Indicator Lamp	Light up when the control circuit is powered on.
11	IO Signal Connection Port	Socket for IO signal connectors.
12	Encoder Connection Port	Socket for the encoder connectors of the motor.
13	External Communication Connector	Standard RJ-45 terminal.
14	USB Connector	Standard Mini USB Type-B.
15	IO Signal Connector	Connector for IO signal cables.
16	Encoder Connector	Connector for motor encoder cables.

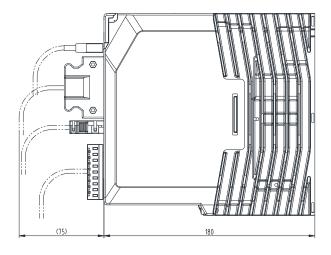
1.5 Ratings and Specifications

Drive Model: ED3L-			01A	02A	04A	08A	10A	15A	20A
Continuous Output Current	0.9	1.1	1.5	2.9	5.1	6.9	8.2	11.3	
Instantaneous Maximum O [Arms]	3.3	4.0	5.8	11.5	19.5	21.0	24.6	33.9	
Power Supply Capacity	Single-phase	0.2	0.3	0.6	1.2	1.9	2.6	4.0 (注)	ı
[kVA]	Three-phase	_	_	_	_	1.6	2.0	3.0	3.5

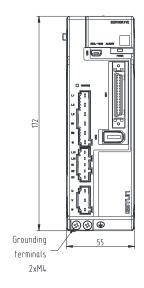
400VAC							
Drive Model: ED3L-	10D	15D	20D	30D	50D	75D	
Continuous Output Current [Arms]	3.6	5.0	7.1	12.0	17.0	27.3	
Max Output Current [Arms]	10.9	17.7	24.7	37.8	53.0	70.7	
Mains Power Equipment Capacity [kVA] (3-phase)	1.8	2.8	3.5	5.0	8.2	12.0	

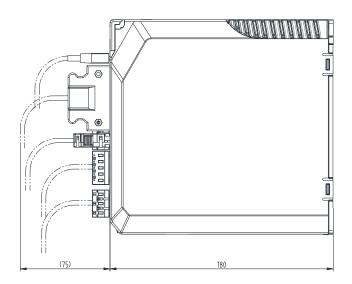
Input Power	200VA	AC	 Single-phase AC 200V~240V, -15%~+10%, 50Hz/60Hz 3-phase AC200V~240V, -15%~+10%, 50Hz/60Hz (rated power ≥ 0.75kW) 		
	400V	AC	3-phase AC380V~440V, -15%~+10%, 50Hz/60Hz		
Control Power	200V	AC	Single-phase AC 200V~240V, -15%~+10%, 50Hz/60Hz		
Control Power	400V	AC	Single-phase AC 200V~440V, -15%~+10%, 50Hz/60Hz		
Control Method	·		SVPWM		
Feedback			Serial encoder: 17 bits incremental magnetoelectric encoders 17 bits absolute magnetoelectric encoders 20bitsIncremental encoder 23bitsAbsolute encoder		
	Operation	Temperature	• -5°C to 55°C (-5°C to 40°C for zero stacking gap installation)		
	Operation	Humidity	5% to 95% (with no condensation)		
	Storage	Temperature	-20°C to +85°C		
	Storage	Humidity	5% to 95% (with no condensation)		
Environmental Conditions	Protection Class		All terminals are installed in place to meet IP20		
	Altitude		1,000 m or less		
	Vibration Resistance		4.9m/s ²		
	Shock Resistance		19.6m/s ²		
	Power Syst	em	TN System		

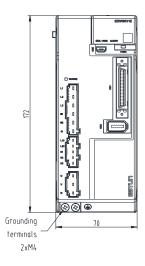

Mounting			Base-mounted
	Speed Con	trol Range	1:5000
	Coefficient of Speed Fluctuation		±0.01% of rated speed max. (For a load fluctuation of 0% to 100%)
Performance			0% of rated speed max. (For a load fluctuation of ±10%)
2 011011111100			$\pm 0.1\%$ of rated speed max. (For a temperature fluctuation of 25 $^{\circ}\text{C}\pm 25$ $^{\circ}\text{C}$)
	Soft Start 7	Time Setting	0s to 10s (Can be set separately for acceleration and deceleration.)
		Reference Voltage	±10VDC at rated torque (Variable setting range: ±0 to 10VDC) Max. input voltage: ±12V
Torque Control	Analog reference	Input Impedance	About $10 \mathrm{M}\Omega$ or above
Torque Control		Circuit Time Constant	10μs
	Torque selection	Inner setting	4 torque selections
		Reference Voltage	±10VDC at rated speed (Variable setting range: ±0 to 10VDC) Max. input voltage: ±12V
Ī	Analog reference	Input Impedance	About $10M\Omega$ or above
Speed control		Circuit Time Constant	10μs
	Speed selection	Rotation Direction Selection	With /P-CON signal
		Inner setting	7 speed selections
		Туре	 Sign + pulse train CCW + CW pulse train 90 phase difference 2-phase (phase A + phase B)
		Form	Non-insulated linde driver (about + 5V), open collector
Position Control	Pulse reference	Frequency	×1 multiplier: 4Mpps ×2 multiplier: 2Mpps ×4 multiplier: 1Mpps Open collector: 200Kpps Frequency will begin to decline when the duty ratio error occurs
	PCP	Inner setting	32 position contacts
	Encoder Double Output	ivided Pulse	Phase A, phase B, phase C: Line-driver output. Number of divided output pulses: Any setting is allowed.
I/O Signals	Input Signals		Allowable voltage range: 24 VDC ±20% Number of input points: 10 (2 of them are high-speed optocoupler inputs, fixed as Touch Probe)
			Input Signals are S-ON (Servo ON), P-CON (Proportional Control), ALM-RST (Alarm Reset), CLR (Position Error Clear), P-OT (Forward Drive Prohibit), N-OT (Reverse Drive Prohibit), P-CL (Forward External Torque Limit), N-CL (Reverse External Torque

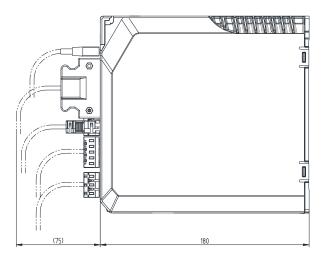

		Limit).			
		Except TP1 and TP2, a signal can be allocated and the positive and negative logic can be changed.			
	Output Signals	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 4 (1 of them fixed for Servo Alarm)			
		Output Signals are TGON (Rotation Detection), ALM (Servo Alarm), SRDY (Servo Ready), COIN (Positioning Completion), PAO (Encoder Divided Pulse, Phase A), PBO (Encoder Divided Pulse, Phase B), PCO (Encoder Divided Pulse, Phase C).			
		Except ALM, a signal can be allocated and the positive and negative logic can be changed.			
LICD	Interface	Personal computer (with ESView V4)			
USB Communications	Communications Standard	Conforms to USB2.0 standard (12 Mbps)			
External commun	ication (RJ45)	Serial communication standard, Modbus protocol			
Display		Five 7-segment LEDs			
Indicator Lamps		CHARGE, POWER			
Panel Operator		4 Buttons			
Regenerative Processing		 Rated power from 50W to 400W must connect an external regenerative resistor. Rated power from 750W to 2kW are built-in. 			
Protective Function	ons	Overcurrent, Overvoltage, Undervoltage, Overload, Regeneration Error, Overspeed, etc.			
Utility Functions		Alarm history, Jogging, Mechanical analysis, Load inertia identification, Auto-Tuning, etc.			

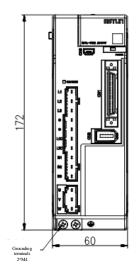
NOTE: when using single-phase AC power for ED3L-15A* drivers, reduce the load factor rating to 80%.

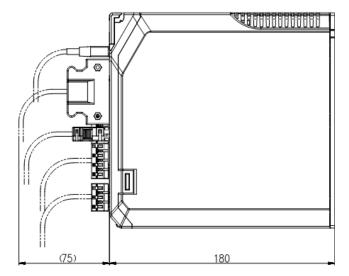

1.6 External Dimensions


Rated power from 50W to 400W

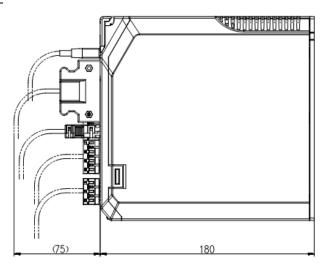


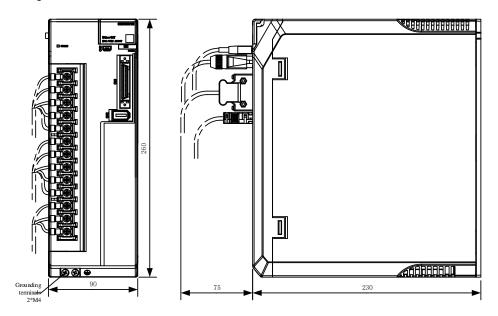

Rated power at 750W and 1kW



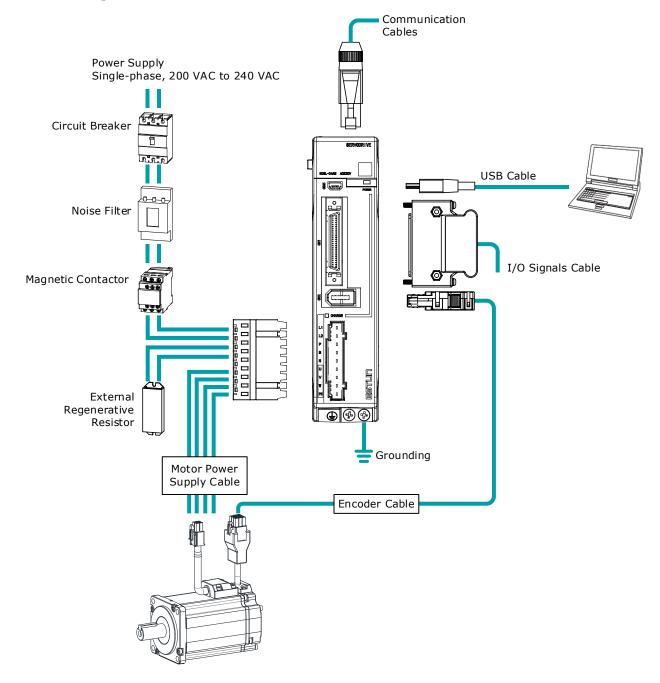

Rated power at 1.5kW and 2kW



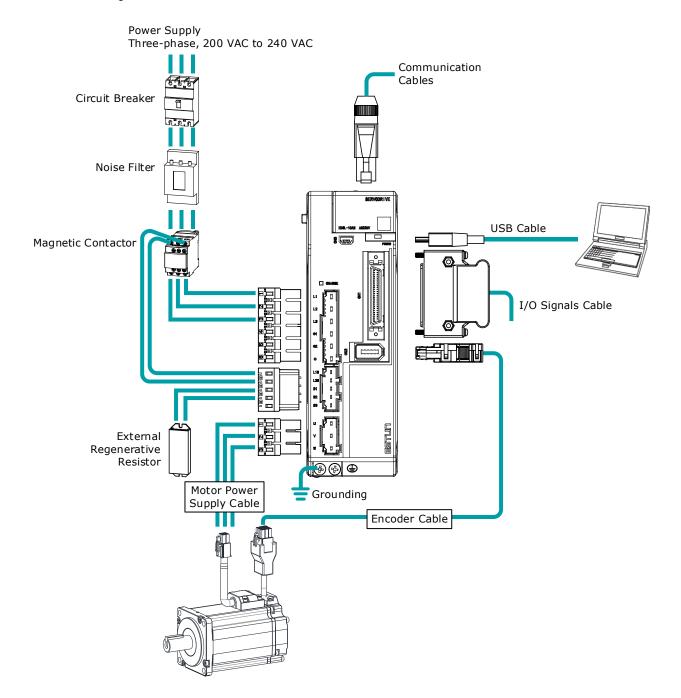

400VAC, rated power from 1kW to 1.5kW



400VAC, rated power from 2kW to 3kW

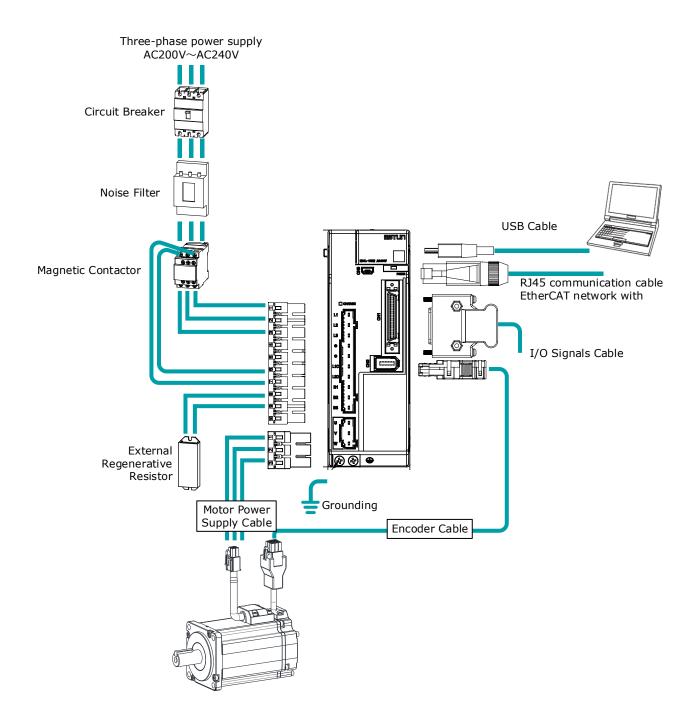


400VAC, rated power from 5kW to 7.5kW



1.7 System Configuration

200VAC Rated power from 50W to 400W



200VAC Rated power from 750W to 2kW

400VAC, Rated power from: 1kW~7.5kW

Take the 1kW drive as an example:

Minimum System Configuration

The minimum system configuration includes at least the following components.

Component Name	Description		
Power Supply	Control power supply: (L1C,L2C) Single-phase AC 200V to 240V, -15% to +10%, 50Hz/60Hz Note: Single-phase power supply is used for 400W drive. Mains power supply (L1,L2,L3): three-phase AC 200V to 240V, -15% to		
	+10%, 50Hz/60Hz		
Circuit Breaker	Please use a Type C MCB to protect the power cord and to cut the circuit in the event of overcurrent.		
Circuit Breaker	The minimum current rating of the circuit breaker varies with the drive model.		
Noise Filter	Protection against external noise interference from the power cable, with the current rated at 10A or 20A.		
Magnetic Contactor	On/off control of the input circuit.		
External Regenerative Resistor	The minimum resistance value of the external regenerative resistor varies with the drive model.		
Drive	ED3L Series Servo Drives.		
Motor	Suitable for use with EM3A servo motors or EMG (at rated power ≥ 1kW) servo motors.		
Controller	The device provided for servo applications, mechanical motion programming.		
PC software	ESView V4 software for PC.		
Cables	Encoder cables, motor power cables, external communication cables, IO cables, etc.		

Minimum system configuration of 400VAC

The minimum system configuration consists of at least the following components.

Component	Specification		
Downer cumply	Control power supply: (L1C,L2C) Single-phase AC AC 220V~440V, - 15%~+10%, 50Hz/60Hz		
Power supply	Mains power supply (L1,L2,L3): three-phase 380V~440V, -15% ~+10%, 50Hz/60Hz		
Circuit breaker	Please use a Type C MCB to protect the power cord and to cut the circuit in the event of overcurrent.		
	The minimum current rating of the circuit breaker varies with the drive model.		
Noise filter	Protection against external noise interference from the power cable, with the current rated at 10A or 20A.		
Electromagnetic contactor	ON/OFF control of the input circuit.		
External regenerative resistor	The minimum resistance value of the external regenerative resistor varies with the drive model.		
Drive	ED3L Series Servo Drives.		
Motor	Suitable for use with EM3A servo motors or EM3G (at rated power $\geq 0.9 \text{kW}$) servo motors.		
Controller	The device provided for servo applications, mechanical motion programming.		
PC debugging tool	ESView V4 software for PC.		
Cables	Encoder cables, motor power cables, external communication cables, IO cables, etc.		

Specifications of the Basic Peripherals

Model	Main circuit voltage	Spec. of built-in regenerative resistor	Min. value of external regeneration resistor	Min. rated current of the circuit breaker
ED3L-A5AMA	Single-phase AC 200V~240V	_	45Ω	4A(single-phase)
ED3L-01AMA	Single-phase AC 200V~240V	_	45Ω	4A(single-phase)
ED3L-02AMA	Single-phase AC 200V~240V	_	45Ω	4A(single-phase)
ED3L-04AMA	Single-phase AC 200V~240V	_	45Ω	4A(single-phase)
ED3L-08AMA	Single-phase / 3-phase AC 200V~240V	50Ω / 60W	25Ω	10A(single- phase)/6A(3-phase)
ED3L-10AMA	Single-phase / 3-phase AC 200V~240V	50Ω/60W	25Ω	10A(single-phase)/6A(3-phase)

Model	Main circuit voltage	Spec. of built-in regenerative resistor	Min. value of external regeneration resistor	Min. rated current of the circuit breaker
ED3L-15AMA	Single-phase / 3-phase AC 200V~240V	40Ω / 80W	25Ω	20A(single-phase)/16A(3-phase)
ED3L-20AMA	3-phase AC 200V~240V	40Ω / 80W	25Ω	16A(3-phase)
ED3L-10DMA	3-phase AC 380V~440V	100Ω/80W	65Ω	4A(3-phase)
ED3L-15DMA	3-phase AC 380V~440V	100Ω/80W	65Ω	6A(3-phase)
ED3L-20DMA	3-phase AC 380V~440V	50Ω/80W	40Ω	10A(3-phase)
ED3L-30DMA	3-phase AC 380V~440V	50Ω/80W	40Ω	16A(3-phase)
ED3L-50DMA	3-phase AC 380V~440V	35Ω/80W	20Ω	20A(3-phase)
ED3L-75DMA	3-phase AC 380V~440V	35Ω/80W	20Ω	25A(3-phase)

Drive model	power	Motor model	Encoder cable	Power cable	
ED3L- A5A	50W	EM3A-A5A		EC3P-N9118-□□ (No brakes) EC3P-B9118-□□ (With brake) EC3P-N9718-□□ (No brakes, IP65) EC3P-B9718-□□ (With brake, IP65)	
ED3L- 01A	100W	EM3A-01A			
ED3L- 02A	200W	EM3A-02A	EC3S-I1724-□□ (Incremental, IP65) EC3S-A1724-□□ (Absolute,		
ED3L- 04A	400W	EM3A-04A EM3J-04A	IP65) EC3S-I1124-□□ (Incremental) EC3S-A1124-□□ (Absolute)		
ED3L- 08A	750W	EM3A-08A EM3J-08A		EC3P-N8118-□□ (No brakes) EC3P-B8118-□□ (With brake) EC3P-N8718-□□ (No brakes, IP65)	
		EM3A-10A		EC3P-B8718- (With brake, IP65)	
ED3L- 10A 1kW	1kW	EMG-10A	EC3S-I1324-□□ (Incremental) EC3S-A1324-□□ (Absolute)		
		EM3G-09A	EC3S-I1924-□□ (Incremental) EC3S-A1924-□□ (Absolute)		
ED3L- 15A 1.:	1.5kW		EMG-15A	EC3S-I1324-□□ (Incremental) EC3S-A1324-□□ (Absolute)	EC3P-N9314-□□ (No brakes)
		EM3G-13A	EC3S-I1924-□□ (Incremental) EC3S-A1924-□□ (Absolute)	EC3P-B9314-□□ (With brake)	
		EM3A-15A	EC3S-I1924-□□ (Incremental) EC3S-A1924-□□ (Absolute)		
ED3L- 20A	2kW	EMG-20A	EC3S-I1324-□□ (Incremental) EC3S-A1324-□□ (Absolute)		

Drive model	power	Motor model	Encoder cable	Power cable
		EM3A-20A	EC3S-I1924-□□ (Incremental) EC3S-A1924-□□ (Absolute)	
ED3L- 10D	1kW	EM3G-09D□A224	EC3S-A1924-□□(Absolute)	EC3P-N9314-□□(No brakes) EC3P-B9314-□□ (With brake)
ED3L- 15D	1.5kW	EM3A-15D□B224 EM3G-13D□A224	EC3S-A1924-□□(Absolute)	EC3P-N9314-□□(No brakes) EC3P-B9314-□□(With brake)
ED3L- 20D	2kW	EM3A-20D□B224 EM3G-18D□A224	EC3S-A1924-□□(Absolute)	EC3P-N9314-□□(No brakes) EC3P-B9314-□□(With brake)
ED3L- 30D	3kW	EM3A-30DLA224 EM3G-29DLA244	EC3S-A1924-□□(Absolute)	EC3P-N8313-□□(No brakes) EC3P-B8313-□□(With brake) EC3P-N8212-□□(No brakes) EC3P-B8212-□□(With brake)
ED3L- 50D	5kW	EM3A-40DLA224 EM3A-50DLA224 EM3G-44DLA224	EC3S-A1924-□□(Absolute)	EC3P-N9313-□□(No brakes) EC3P-B9313-□□(With brake) EC3P-N9319-□□(No brakes) EC3P-B9319-□□(With brake) EC3P-N9219-□□(No brakes) EC3P-B9219-□□(With brake)
ED3L- 75D	7.5kW	EM3G-55DLA224 EM3G-75DLA224	EC3S-A1924-□□(Absolute)	EC3P-N9219-□□(No brakes) EC3P-B9219-□□(With brake) EC3P-N9211-□□(No brakes) EC3P-B9211-□□(With brake)

 $\Box\Box$: The last two digits of the cable indicate the length (as: 1M5 $_{\sim}$ 03 $_{\sim}$ 05 $_{\sim}$ 08 $_{\sim}$ 10 $_{\sim}$ 12 $_{\sim}$ 15 $_{\sim}$ 20), The unit is m.

Flexible cables are also provided, marked "-RX".

Chapter 2 Installation

2.1 Installation Precautions

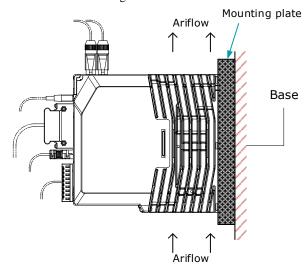
• Installation Near Sources of Heat

Implement measures to prevent temperature increases caused by external heat sources so that the ambient temperature of the Drive is within the specified limits.

Installation Near Sources of Vibration

Install a vibration absorber on the installation surface of the Drive so that the Drive will not be subjected to vibration.

Other Precautions

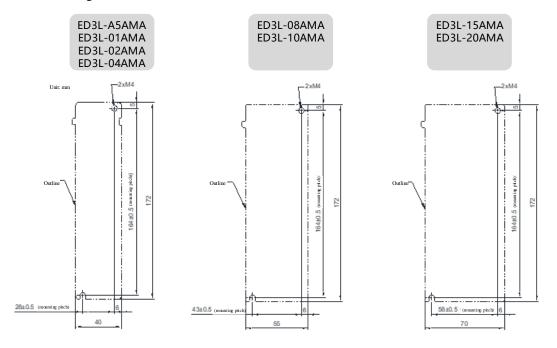

Never install the Drive in a location subject to high temperatures, high humidity, water drops, cutting oil, excessive dust, excessive dirt, excessive iron powder, corrosive gasses, or radioactivity.

2.2 Mounting Types and Orientation

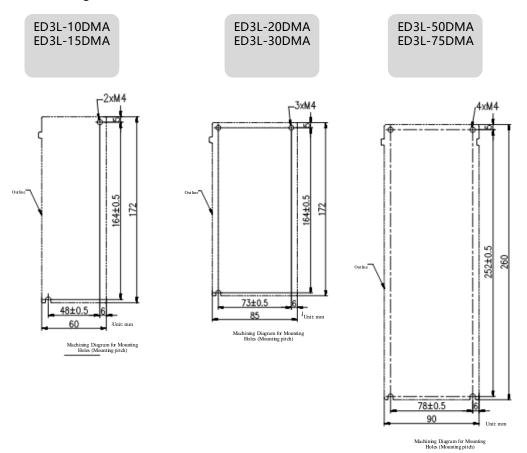
The Drives are based mounted and should be fitted to a non-painted metal surface. Mount the Drive vertically, as is shown in Figure 2-1.

Mount the Drives so that the Display Panel is facing toward the operator. Prepare two or three mounting holes for the Drive and mount it securely in the mounting holes (The number of mounting holes depends on the size of the Drive).

Figure 2-1 Base-mounted diagram



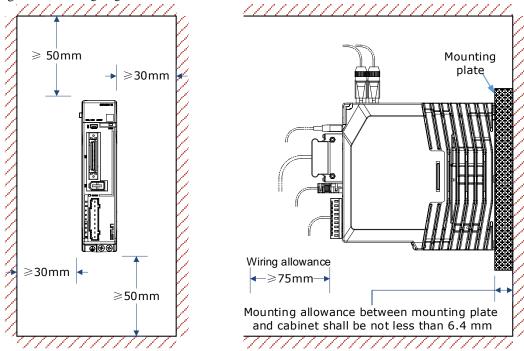
2.3 Mounting Hole Dimensions


Use all mounting holes to securely mount the Drive to the mounting surface.

To mount the Drive, use a screwdriver that is longer than the depth of the Drive.

Wiring diagram for mounting holes at 200VAC

Wiring diagram for mounting holes at 400VAC



2.4 Mounting Interval

Installing One Drive in a Control Cabinet

When installing a single Drive useFigure 2-2 as a reference for free space around the installation.

Figure 2-2 Installing a sigle Drive in a control cabinet

Installing multiple Drives in a Control Cabinet

When installing a multiple Drives use Figure 2-3 as a reference for free space around the installation.

≥ 50 mm 1mm -> 30 mm -> 30 mm -> 30 mm -> 50 mm

Figure 2-3 Installing multiple Drives in a control cabinet

The ED3L allows close mounting with a distance of 1mm between two adjacent drives. The ED3L 50D and 75D drives do not allow close mounting due to wiring, and the distance between drives is to be confirmed upon assembly of the cable, for which 80mm is the recommended

Chapter 3 Wiring and Connecting

3.1 Precautions for Wiring

3.1.1 General Precautions

Never change any wiring while power is being supplied, in case a risk of electric shock or injury.

- Wiring and inspections must be performed only by qualified engineers.
- Check all wiring and power supplies carefully.

 Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury.
- Connect the AC and DC power supplies to the specified Drive terminals.
- Wait for at least five minutes after turning OFF the power supply and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Never touch the power supply terminals while the CHARGE lamp is lit after turning OFF the power supply because high voltage may still remain in the Drive.
- Observe the precautions and instructions for wiring and trial operation precisely as described in this document.
- Check the wiring to be sure it has been performed correctly.
 Connectors and pin layouts are sometimes different for different models. Always confirm the pin layouts in technical documents for your model before operation.

- Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Signal Cables and Encoder Cables.
- The main circuit cable of the Drive must be guaranteed to work normally at 75 °C.
 - Observe the following precautions when wiring the Drive's main circuit terminals.
 - Turn ON the power supply to the Drive only after all wiring, including the main circuit terminals, has been completed.
 - If a connector is used for the main circuit terminals, remove the main circuit connector from the Drive before you wire it.
 - Insert only one wire per insertion hole in the main circuit terminals.
 - When you insert a wire, make sure that the conductor wire (e.g. whiskers) does not come into contact with adjacent wires.
- Install molded-case circuit breakers and other safety measures to provide protection against short circuits in external wiring.

- Use a molded-case circuit breaker or fuse to protect the main circuit.

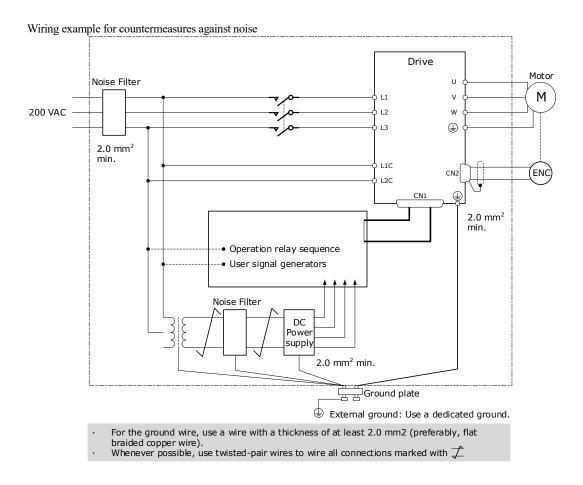
 The Drive connects directly to a commercial power supply; it is not isolated through a transformer or other device. Always use a molded-case circuit breaker or fuse to protect the Servo System from accidents involving different power system voltages or other accidents.
- IMPORTANT
- Install an earth leakage breaker.

 The Drive does not have a built-in ground fault protective circuit. To configure a safer system, install a ground fault detector against overloads and short-circuiting, or install a ground fault detector combined with a molded-case circuit breaker.
- Never turn the power supply ON and OFF more than necessary.
 Use the Drive for applications that require the power supply to turn ON and OFF frequently. Such applications will cause elements in the Drive to deteriorate.
- After you have started actual operation, allow at least one hour between turning the power supply ON and OFF (as a guideline).

3.1.2 Countermeasures against Noise

The Drive is designed as an industrial device. It therefore provides no measures to prevent radio interference. The Drive uses high-speed switching elements in the main circuit. Therefore, peripheral devices may be affected by switching noise.

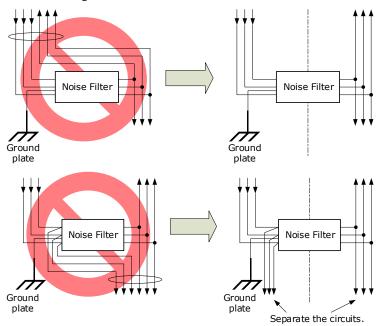
If the equipment is to be used near private houses or if radio interference is a problem, take countermeasures against noise.

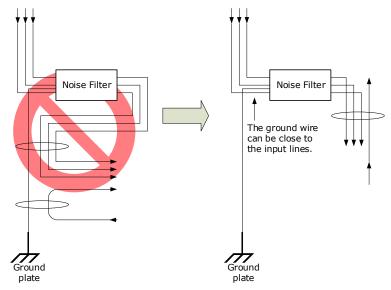

Since the Drive uses microprocessors, it may be affected by switching noise from peripheral devices.

To prevent the noise from the Drive or the peripheral devices from causing malfunctions of any devices, take the following countermeasures against noise as required.

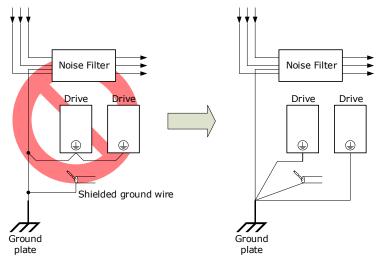
- Install the input reference device and Noise Filter as close to the Drive as possible.
- Always install a Surge Absorber for relays, solenoids, and Magnetic Contactor coils.
- Never place the following cables in the same duct or bundle them together. Also, separate the cables from each other by at least 30 cm.
- Never share the power supply with an electric welder or electrical discharge machine. If the Drive is
 placed near a high-frequency generator, install Noise Filters on the input side on the Main Circuit
 Power Supply Cable and Control Power Supply Cable even if the same power supply is not shared
 with the high-frequency generator. Refer to the section Noise Filters for information on connecting
 Noise Filters.
- Implement suitable grounding measures. Refer to the section 错误!未找到引用源。**Grounding** for information on grounding measures.

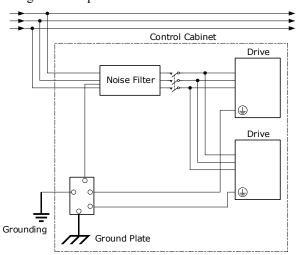
Noise Filters


You must attach Noise Filters in appropriate places to protect the Drive from the adverse effects of noise. 0 is an example of wiring for countermeasures against noise.


Noise Filter Wiring and Connection Precautions

Always observe the following precautions when wiring or connecting Noise Filters.


 Separate input lines from output lines. Do not place input lines and output lines in the same duct or bundle them together.


• Separate the Noise Filter ground wire from the output lines. Do not place the Noise Filter ground wire, output lines, and other signal lines in the same duct or bundle them together.

• Connect the Noise Filter ground wire directly to the grounding plate. Do not connect the Noise Filter ground wire to other ground wires.

• If a Noise Filter is located inside a control panel, first connect the Noise Filter ground wire and the ground wires from other devices inside the control panel to the grounding plate for the control panel, then ground the plate.

3.1.3 Recommended EMC Filters

To comply with the limits based on IEC/EN 61800-3 second environment (C2) the Drive and Motor must be installed with an EMC/RFI filter. Recommended filters are:

Drive voltage	ED3L Power Range	EMC C2	
200VAC	50W to 1.5kW	Schaffner FN3270H-10-44	
200 V AC	2kW	Schaffner FN3270H-20-44	
	1kW~2 kW	Schaffner FN 3025HP-10-71	
400VAC	3kW~5 kW	Schaffner FN 3025HP-10-71	
	7.5kW	Shanghai Aerodev DNF51-3PH-3 ×20A	

These filters have been tested with cable lengths of 3m and 20m.

3.1.4 Grounding

Implement grounding measures as described in this section. Implementing suitable grounding measures will also help prevent malfunctions, which can be caused by noise. Always use an unpainted backplane for electrical cabinets.

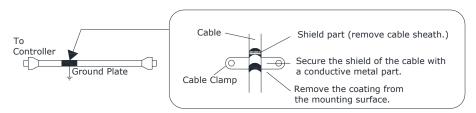
- Ground the Drive to a resistance of 100 m Ω or less.
- Be sure to ground at one point only.

Ground the Motor directly if the Motor is insulated from the machine.

Motor Frame Ground or Motor Ground

If the Motor is grounded thought the machine, the switching noise current can flow from the main circuit of the Drive through the stray capacitance of the Motor. To prevent this always connect the Motor frame terminal (FG) or ground terminal (FG) of the Motor to the ground terminal $\stackrel{\frown}{=}$ on the Drive. Also, be sure to ground the ground terminal $\stackrel{\frown}{=}$.

Noise on I/O Signal Cables

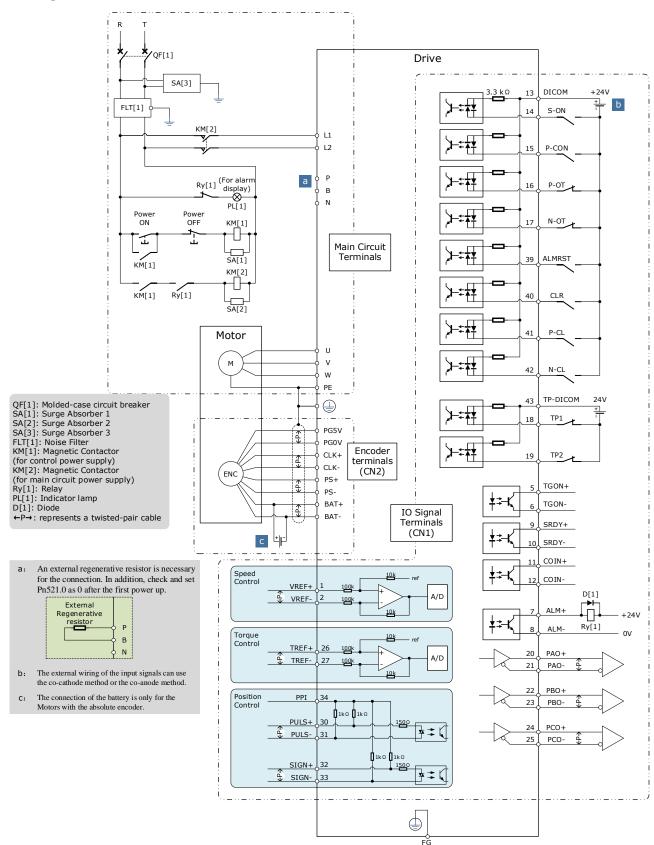

To prevent noise entering the I/O Signal Cable connect the shield of the I/O Signal Cable to the connector shell and ensure the shell is connected to ground.

If placing cables in metal conduits, ensure the conduit is connected to ground.

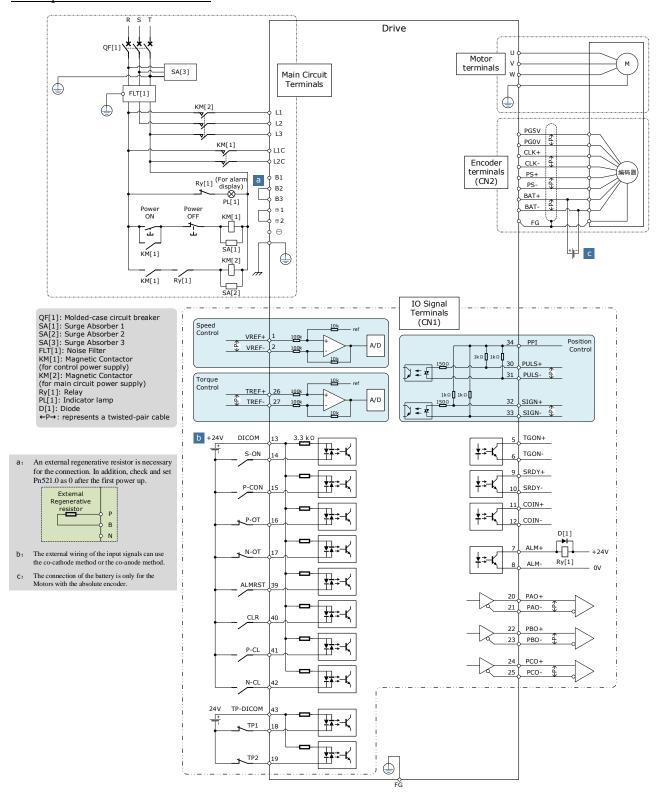
For all grounding, use a single grounding point.

Cable Fixing

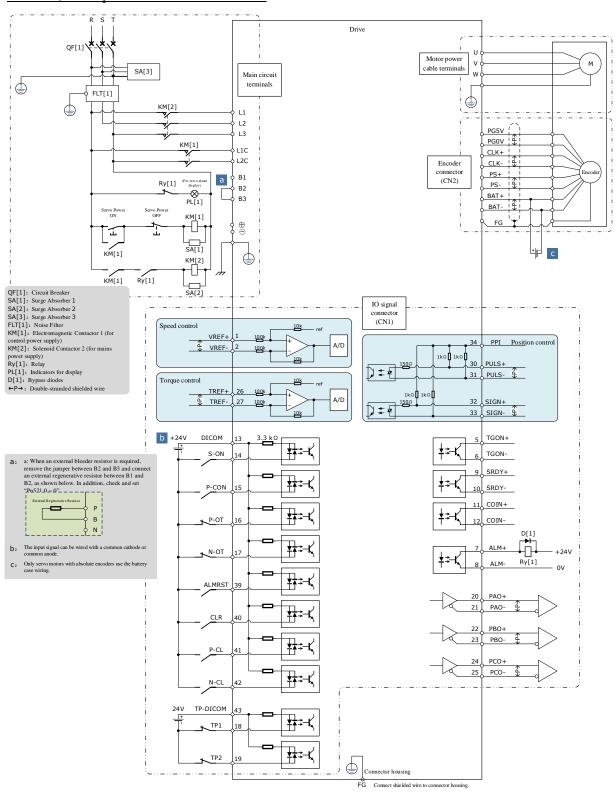
It is recommended that all cable shields are secured with a conductive metal clamp to the ground plate.



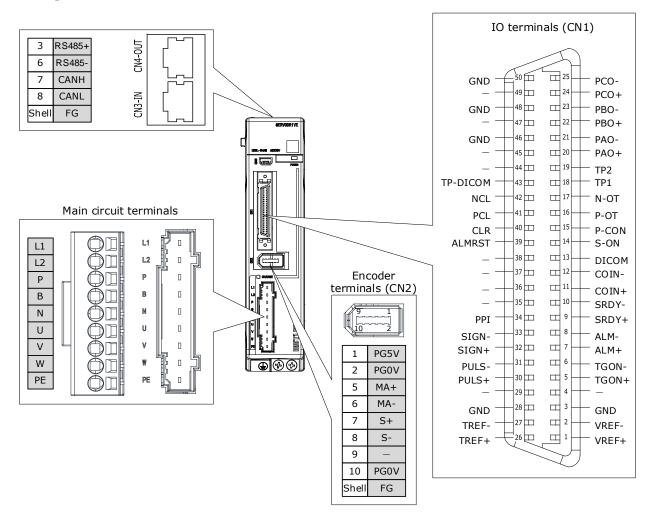
Ferrite Coils


While ferrite coils can be used to solve application specific EMC issues, they should not be necessary for applications.

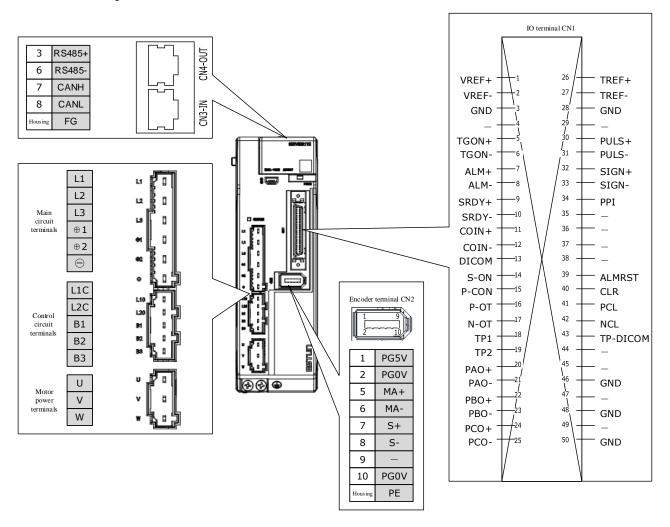
3.2 Basic Wiring Diagrams


Rated power from 50W to 400W

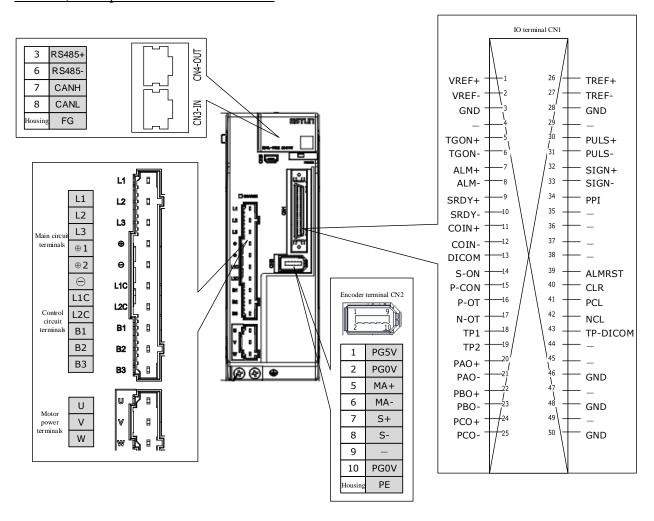
Rated power from 750W to 2kW

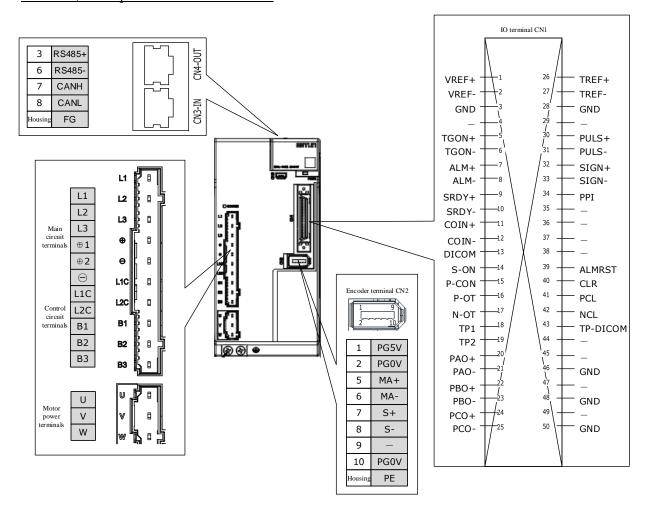


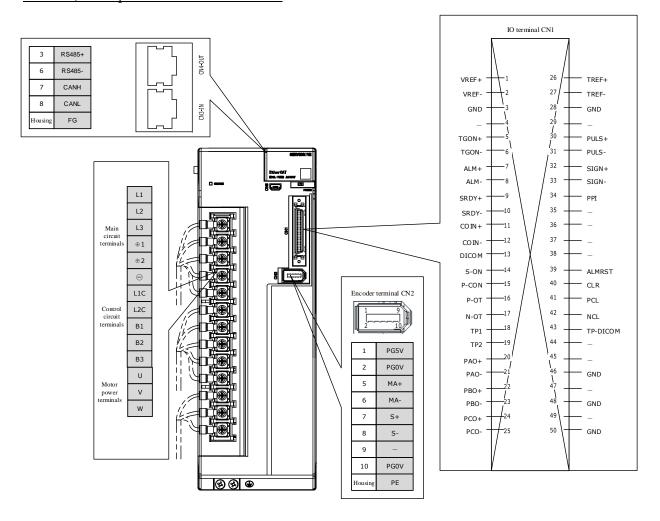
400VAC, rated power from 1kW to 7.5kW



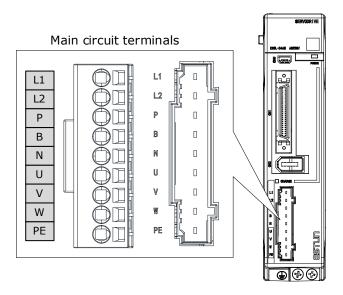
3.3 Terminals Arrangements


Rated power from 50W to 400W

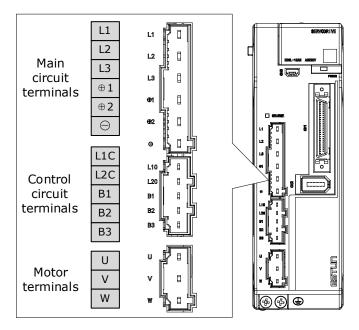

200VAC, rated power from 750W to 2kW


400VAC, rated power from 1kW to 1.5kW

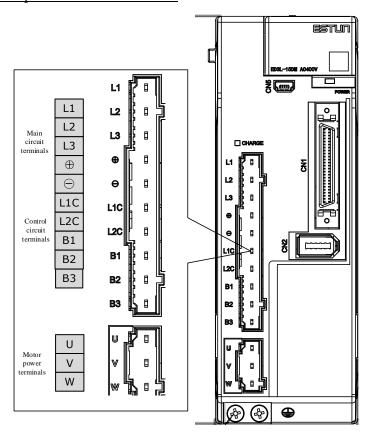
400VAC, rated power from 2kW to 3kW


400VAC, rated power from 5kW to 7.5kW

3.4 Wiring the Power Supply to Drive

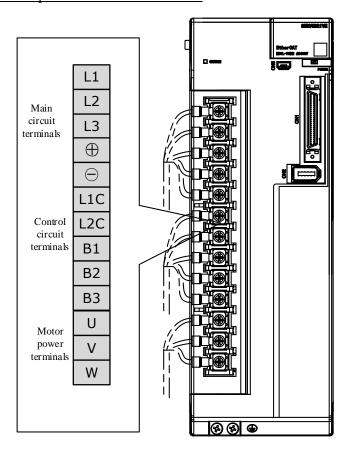

3.4.1 Terminals Arrangement

Rated power from 50W to 400W


Symbols	Name	Specifications and Reference	
L1、L2	Main circuit power supply input terminals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz	
P、B	Regenerative Resistor terminal	Connects a regenerative resistor with a minimum resistance value of 45 ohm	
P、N	DC terminals	For the common DC bus, connect all P of Drive to the positive pole, and N to the negative pole.	
U、V、W	Motor terminals	Connects the U-phase, V-phase and W-phase of Motor	
PE	Ground terminal	Always connect this terminal to prevent electric shock.	

Rated power from 750W to 2kW

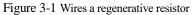
Symbols	Name	Specifications and Reference		
L1、L2、L3	Main circuit power supply input terminals	Three-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz		
⊕1、⊕2	DC reactor terminals	For using a DC reactor, remove the short wiring, and connect a DC reactor between $\oplus 1$ and $\oplus 2$.		
⊕2、⊖	DC terminals	For the common DC bus, connect all $\oplus 2$ of Drive to the positive pole, and \bigcirc to the negative pole.		
L1C、L2C	Control circuit terminals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz		
B1、B2、B3	Regenerative Resistor terminal	 There is a short wiring between B2 and B3 at the factory. When the busbar capacitance is insufficient, remove the short wiring, and connect an external regenerative resistor between B1 and B2. 		
U、V、W	Motor terminals	Connects the U-phase, V-phase and W-phase of Motor		
(1)	Ground terminal	Always connect this terminal to prevent electric shock.		

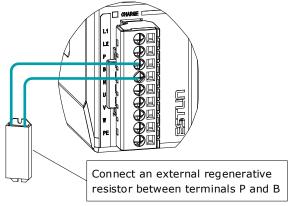

400VAC, rated power from 1kW to 3kW

Take for example a product with a power rating of $1kW\sim1.5kW$. Products with power rating from 1.5kW to 3kW are similar in appearance and have the same components

Symbol	Name	Specifications
L1, L2, L3	Power supply input terminals	3-phase AC 380V~440V, -15%~+10%, 50Hz/60Hz
\oplus	DC reactor connectors	Prior to delivery, the connection between $\oplus 1$ and $\oplus 2$ is in a shorted state. When using a DC reactor, a DC reactor is connected between $\oplus 1$ and $\oplus 2$.
Θ	DC busbar connectors	When multiple servo drives are used in a common DC bus configuration, $\oplus 2$ and \ominus of all drives are connected in series, respectively.
L1C, L2C	Control power terminals	Single phase AC 200V~240V, -15%~ +10%, 50Hz/60Hz
B1, B2, B3	Regenerative resistor connectors	 When using the built-in regenerative resistor: Keep the connection between B2 and B3 shorted. When using an external regenerative resistor: Please remove the jumper between B2 and B3 and connect the external regenerative resistor between B1 and B2.
U, V, W	Motor power connectors	Connect the U, V and W phases of the motor.
	Grounding terminals	Connect the power supply earth terminal for earthing.

400VAC, rated power from 5kW to 7.5kW




Symbols	Name	Specifications
L1, L2, L3	Power supply input terminals	3-phase 380V~440V, -15%~+10%, 50Hz/60Hz
Θ	DC busbar connectors	When multiple servo drives are used in a common DC bus configuration, \oplus and \ominus of all drives are connected in series, respectively.
L1C, L2C	Control power terminals	Single phase AC 380V~440V, -15%~ +10%, 50Hz/60Hz
B1, B2, B3	Regenerative resistor connectors	 When using the built-in regenerative resistor: Keep the connection between B2 and B3 shorted. When using an external regenerative resistor: Please remove the jumper between B2 and B3 and connect the external regenerative resistor between B1 and B2.
U, V, W	Motor power connectors	Connect the U, V and W phases of the motor.
(1)	Grounding terminals	Connect the power supply earth terminal for earthing.
L1, L2, L3	Power supply input terminals	3-phase 380V~440V, -15%~+10%, 50Hz/60Hz

3.4.2 Wiring a Regenerative Resistor

Diver model	Rted power	minimum value	Connection terminals	
ED3L-A5A	50W			
ED3L-01A	100W	450	D D	
ED3L-02A	200W	-45Ω	P、B	
ED3L-04A	400W			
ED3L-08A	750W	250	D1 D2	
ED3L-10A	1kW	$-$ 25 Ω	B1、B2	
ED3L-15A	1.5kW	100	B1、B2C	
ED3L-20A	2kW	10Ω		
ED3L-10DEA	1kW	(50)	B1、B2	
ED3L-15DEA	1.5kW	$-$ 65 Ω		
ED3L-20DEA	2.0kW	400	B1、B2	
ED3L-30DEA	3.0kW	$ 40\Omega$		
ED3L-50DEA	5.0kW	200	D1 D2	
ED3L-75DEA	7.5kW	$ 20\Omega$	B1、B2	

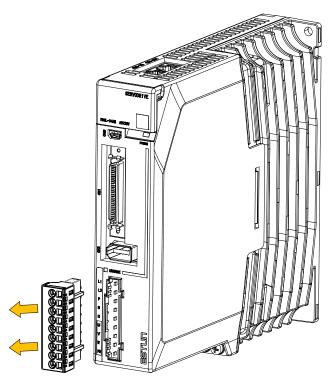
Figure 3-1 is an example of connecting an external regenerative resistor for the drives rated power from 50W to 400W.

Connect the external regenerative resistor as following to avoid damaging the drive or malfunction.

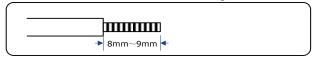
■ It is necessary to connect an external regenerative resistor for the drives rated power from 50W to 400W. The minimum resistance value of the external regenerative resistor is 45 ohms.

Never connect the external regenerative resistor between terminals P and N.

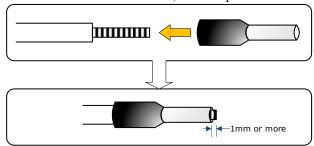
- In the case of the drives rated power from 750W to 1kW, confirms whether the bus capacitance is insufficient. If necessary, connect an external regeneration resistor between terminals B1 and B2. The minimum resistance value of the external regenerative resistor is 25 ohms.
 - Never connect the external regenerative resistor between terminals B1 and B3.
- When an excternal regenerative resistor is connected, check and set Pn521.0 as 0 after the power up.
- Please check and confirm that the external regenerative resistor is mounted on noncombustible materials.

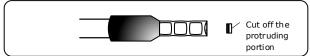

3.4.3 Wiring Procedure

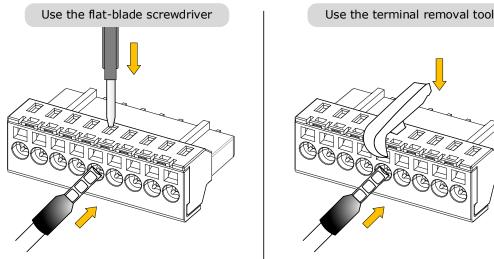
Prepare the following items before preparing the wiring for the Main Circuit Terminals and Control Circuit Terminals.


Required Item	Description
Flat-blade screwdriver or Terminal removal tool	 Flat-blade screwdriver: commercially available screwdriver with tip width of 3.0 mm to 3.5 mm Terminal removal tool: an accessory of the Drive
Cold pressed terminals	Sleeve type ferrule with cross-section from 1.5 mm ² to 2.5 mm ²
Wiring plier	Commercially available plier with crimping and stripping functions

Follow the procedure below to wire the Main Circuit Terminals and Control Circuit Terminals.


Step 1 Remove the Main Circuit Terminals and Control Circuit Terminals from the Drive.


Step 2 Peel off the sheath so that the conductor portion of the cable will protrude from the tip of the ferrule.


Step 3 Insert the cable into the ferrule (It should protrude 1 mm or more from the ferrule).

Step 4 Crimp the cable that has been inserted into the ferrule, and cut off the cable conductor portion protruding from the ferrule (The allowable protruding length after cutting should not be more than 0.5 mm).

Step 5 Use the flat-blade screwdriver or the terminal removal tool to press down the spring button corresponding to the terminal, and then insert the cable.

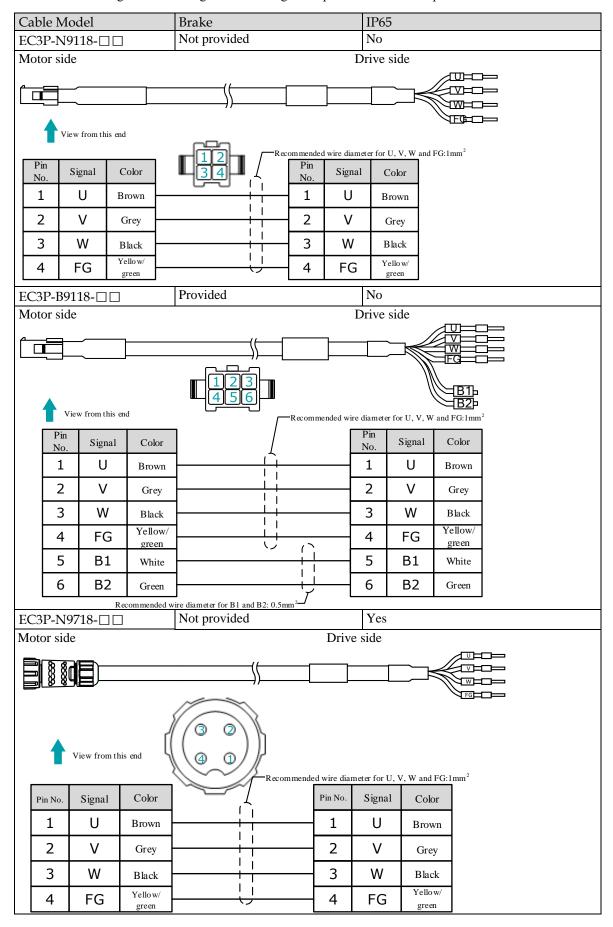
- Step 6 Insert the crimped cable into the connection terminals, and then pull out the tool.
- Step 7 Make all other connections in the same way.
- Step 8 To change the wiring, pull the cable out of the connection terminals.

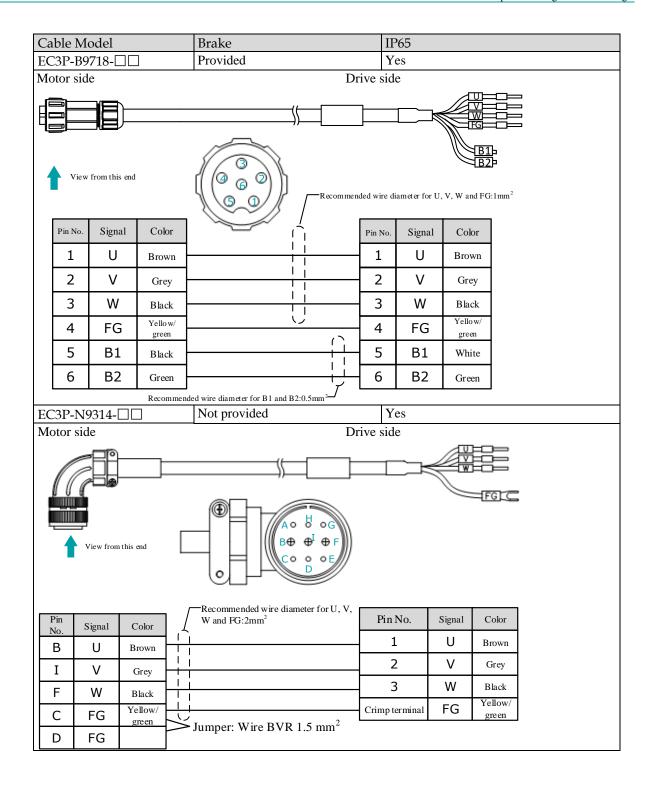

 Use the flat-blade screwdriver to press down the spring button corresponding to the terminal, and then gently pull out the cable.
- Step 9 When you have completed wiring, attach connection terminals to the Drive.

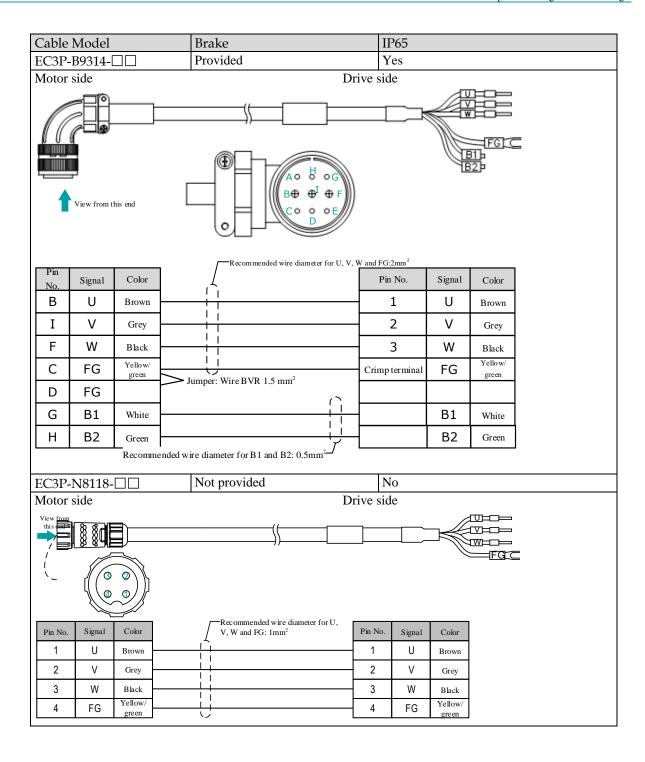
The above wiring procedure is also applicable to the Motor Terminals.

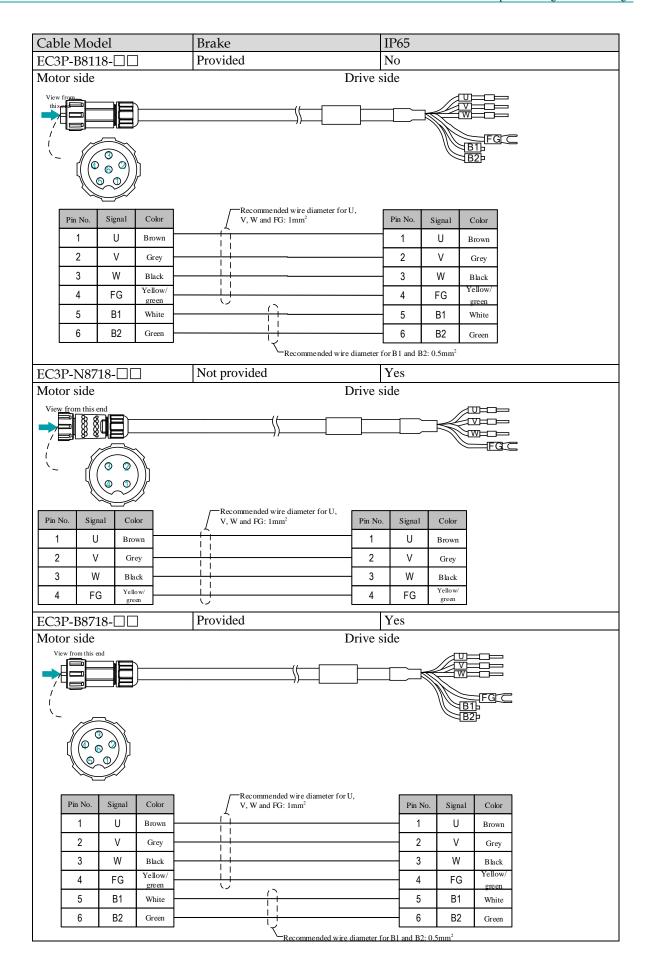
----End

3.4.4 Motor Connection Diagram

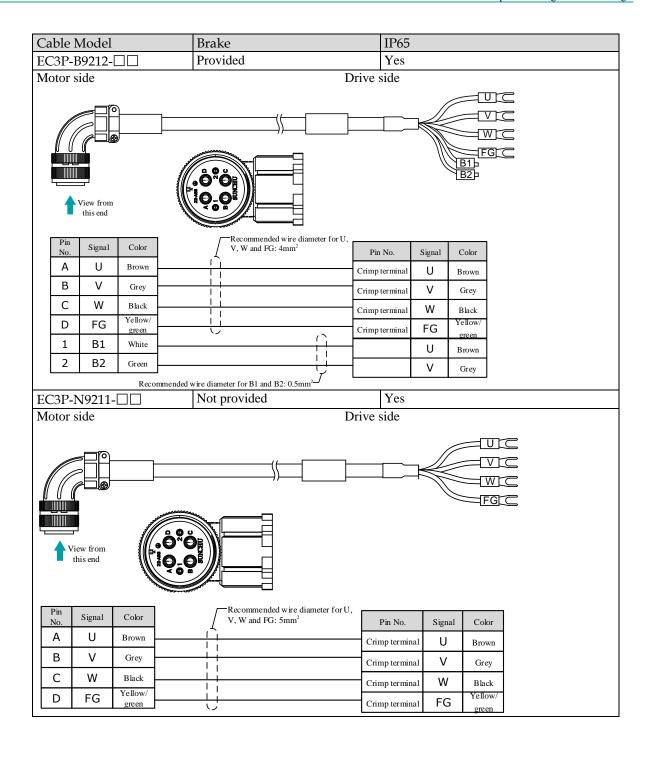

3.4.5 Motor Power Cable Description

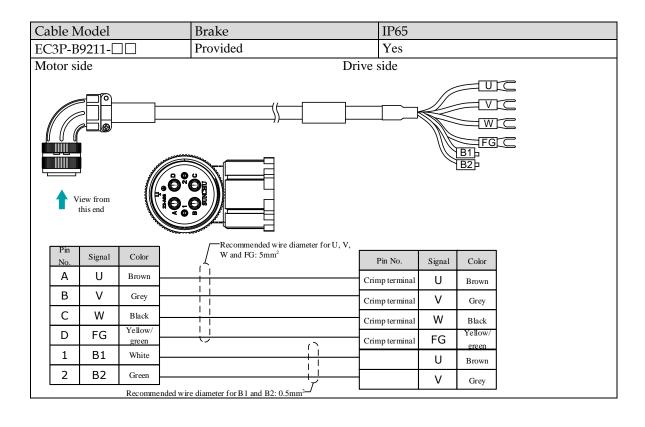

The Motor power cable depends on the Motor model. The common models are shown in the table below.


N. 1.1	р 1	IP65 Plug	Wire diameter	Motor power cable		
Motor model	Brake			length is 3.0m	length is 5.0m	length is 10.0m
EM3A-A5A EM3A-01A	No	No		EC3P-N9118-03	EC3P-N9118-05	EC3P-N9118-10
EM3A-01A EM3A-02A EM3A-04A	No	Yes		EC3P-B9118-03	EC3P-B9118-05	EC3P-B9118-10
EM3A-08A EM3A-10A	Yes	No		EC3P-N9718-03	EC3P-N9718-05	EC3P-N9718-10
EM3J-04A EM3J-08A	Yes	Yes		EC3P-B9718-03	EC3P-B9718-05	EC3P-B9718-10
EM3A-15A EM3A-20A	Not provided	Yes		EC3P-N9314-03	EC3P-N9314-05	EC3P-N9314-10
EM3A-15D EM3A-20D EM3A-30D	3A-20D Provided Yes	Yes		EC3P-B9314-03	EC3P-B9314-05	EC3P-B9314-10
EM3G-09A Not EM3G-13A provided	Yes	2.0mm ²	EC3P-N8718-03	EC3P-N8718-05	EC3P-N8718-10	
EMG-10A EMG-15A EMG-20A	Provided	Yes	2.011111	EC3P-B8718-03	EC3P-B8718-05	EC3P-B8718-10
EM3A-30D	Not provided	Yes		EC3P-N8214-03	EC3P-N8214-05	EC3P-N8214-10
EMSA-30D	Provided	Yes		EC3P-B8214-03	EC3P-B8214-05	EC3P-B8214-10
EM2A 40D	Not yes		EC3P-N9319-03	EC3P-N9319-05	EC3P-N9319-10	
EM3A-40D Provid	Provided	Yes	3.5mm ²	EC3P-B9319-03	EC3P-B9319-05	EC3P-B9319-10
EM3A 50D	Not provided	Yes		EC3P-N9319-03	EC3P-N9319-05	EC3P-N9319-10
EM3A-50D	Provided	Yes		EC3P-B9319-03	EC3P-B9319-05	EC3P-B9319-10

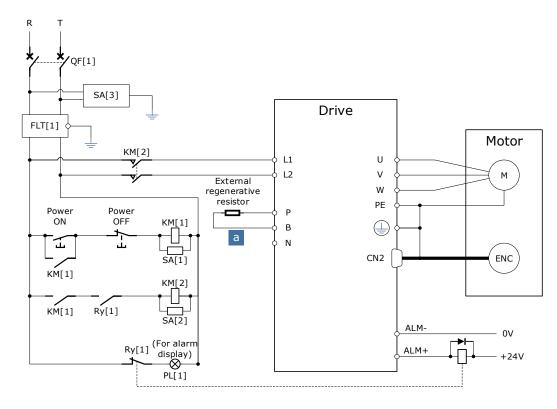

Motor model Brake	IP65 Plug	Wire diameter	Motor power cable			
			length is 3.0m	length is 5.0m	length is 10.0m	
EM3G-29D	Not provided	Yes		EC3P-N8212-03	EC3P-N8212-05	EC3P-N8212-10
LWI3G-27D	Provided	Yes	4.0mm ²	EC3P-N8212-03	EC3P-N8212-05	EC3P-N8212-10
EM3G-44D pr	Not provided	Yes		EC3P-N9212-03	EC3P-N9212-05	EC3P-N9212-10
	Provided	Yes		EC3P-B9212-03	EC3P-B9212-05	EC3P-B9212-10
EM3G-55D	Not provided	Yes		EC3P-N9212-03	EC3P-N9212-05	EC3P-N9212-10
	Provided	Yes		EC3P-B9212-03	EC3P-B9212-05	EC3P-B9212-10
EM3G-75D	Not yes provided	Yes	5.0mm ²	EC3P-N9211-03	EC3P-N9211-05	EC3P-N9211-10
EM3G-73D	Provided	Yes		EC3P-B9211-03	EC3P-B9211-05	EC3P-B9211-10


The following shows the diagram and wiring description of each Motor power cable.





3.4.6 Power Input Wiring Specifications


The power input wiring specification depends on the Motor model. The following table shows the recommended wire gauge for each Drive.

Drive model	Recommended wire gauge			
Bille model	AWG		AWG	
ED3L-A5AEA	14	2.075	8.2	
ED3L-01AEA	14	2.075	8.2	
ED3L-02AEA	14	2.075	8.2	
ED3L-04AEA	14	2.075	8.2	
ED3L-08AEA	13	2.627	10.4	
ED3L-10AEA	13	2.627	10.4	
ED3L-15AEA	12	3.332	13.1	
ED3L-20AEA	12	3.332	13.1	
ED3L-10DEA	14	2.075	8.2	
ED3L-15DEA	14	2.075	8.2	
ED3L-20DEA	13	2.627	10.4	
ED3L-30DEA	13	2.627	10.4	
ED3L-50DEA	10	5.26	20.8	
ED3L-75DEA	9	6.63	26.2	

3.4.7 Power Input Wiring Example

Rated power from 50W to 400W

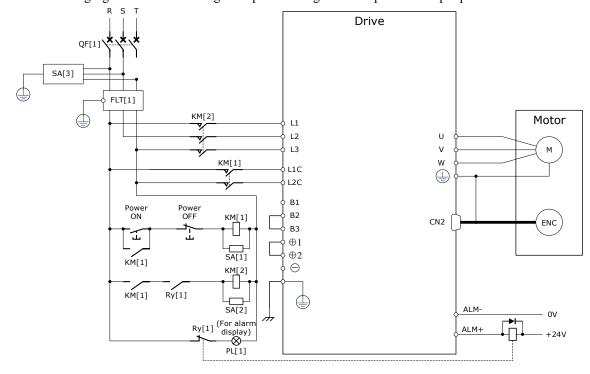
Use single-phase 200 VAC to 240 VAC as the power input for the Drives rated power from 50W to 400W.

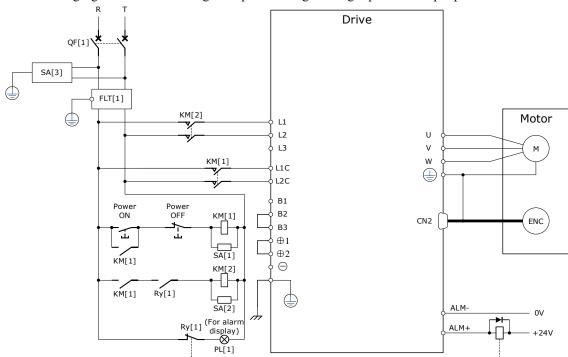
QF[1]: Molded-case circuit breaker

SA[1]: Surge Absorber 1

SA[2]: Surge Absorber 2

SA[3]: Surge Absorber 3 Ry[1]: Relay FLT[1]: Noise Filter PL[1]: Indicator lamp


KM[1]: Magnetic Contactor (for control power supply)


KM[2]: Magnetic Contactor (for main circuit power supply)

Rated power from 750W to 2kW

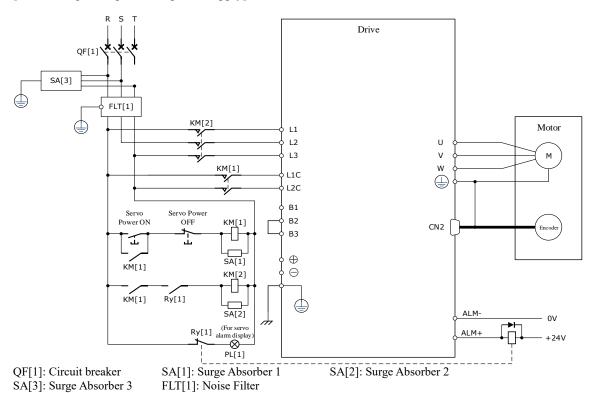
Use single-phase or three-phase 200 VAC to 240 VAC as the power input for the Drives rated power from 750W to 2kW.

The following figure shows the wiring example for using the three-phase AC input power.

The following figure shows the wiring example for using the single-phase AC input power.

QF[1]: Molded-case circuit breaker SA[3]: Surge Absorber 3

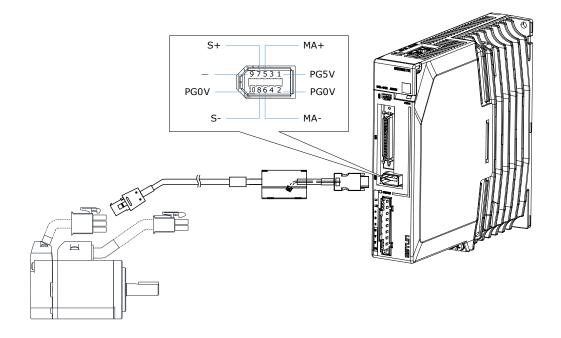
SA[1]: Surge Absorber 1


FLT[1]: Noise Filter PL[1]: Indicator lamp

Ry[1]: Relay KM[1]: Magnetic Contactor (for control power supply) KM[2]: Magnetic Contactor (for main circuit power supply) SA[2]: Surge Absorber 2

400VAC, rated power from 1kW to 5kW

Use a three-phase AC 380V~440V as the power input for the drives.


[When using three-phase AC power supply]

 $\begin{array}{lll} KM[1]: \mbox{Magnetic Contactor (for control power supply)} & \mbox{KM[2]: Magnetic Contactor (for main circuit power supply)} \\ Ry[1]: \mbox{Relay} & \mbox{PL[1]: Indicator lamp for display} \end{array}$

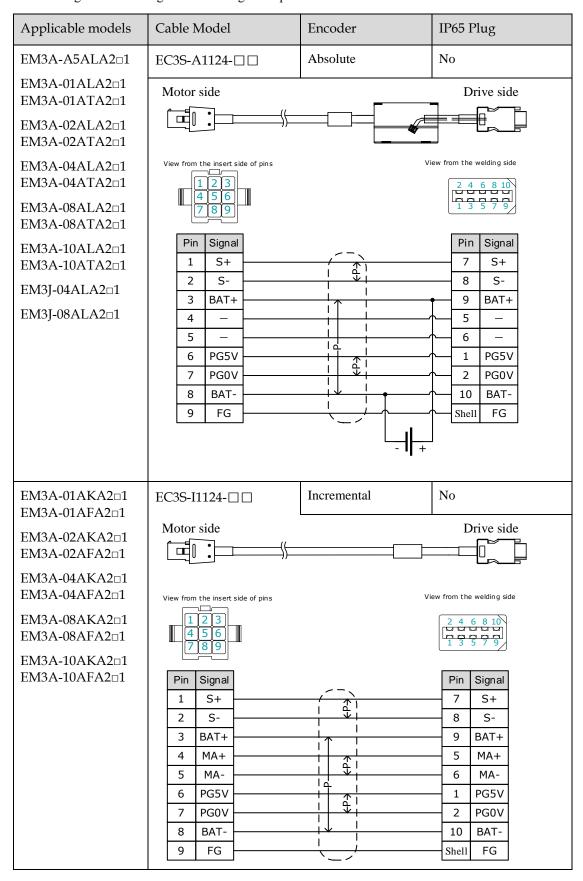
3.5 Wiring the Encoder

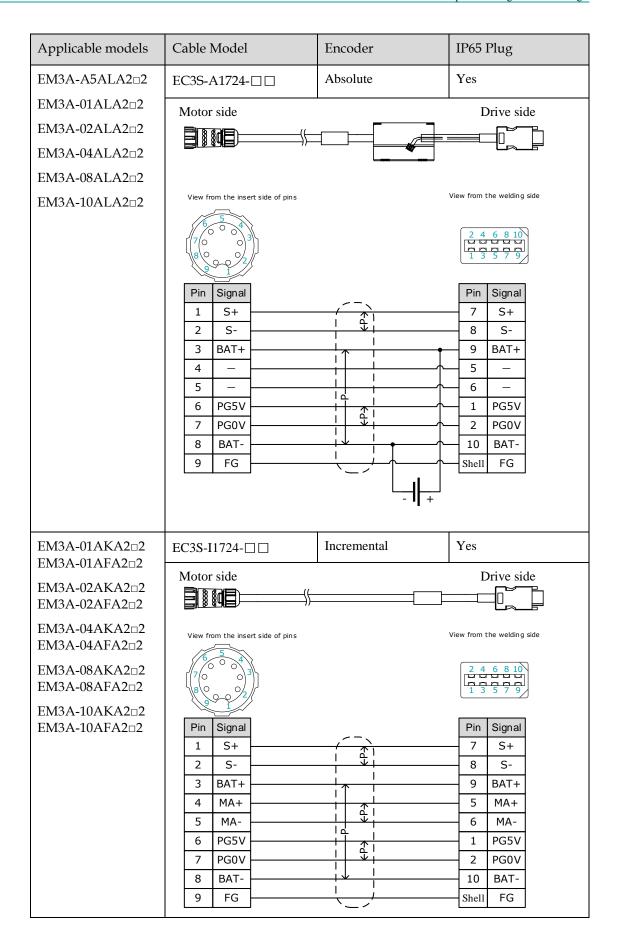
3.5.1 Connection Diagram

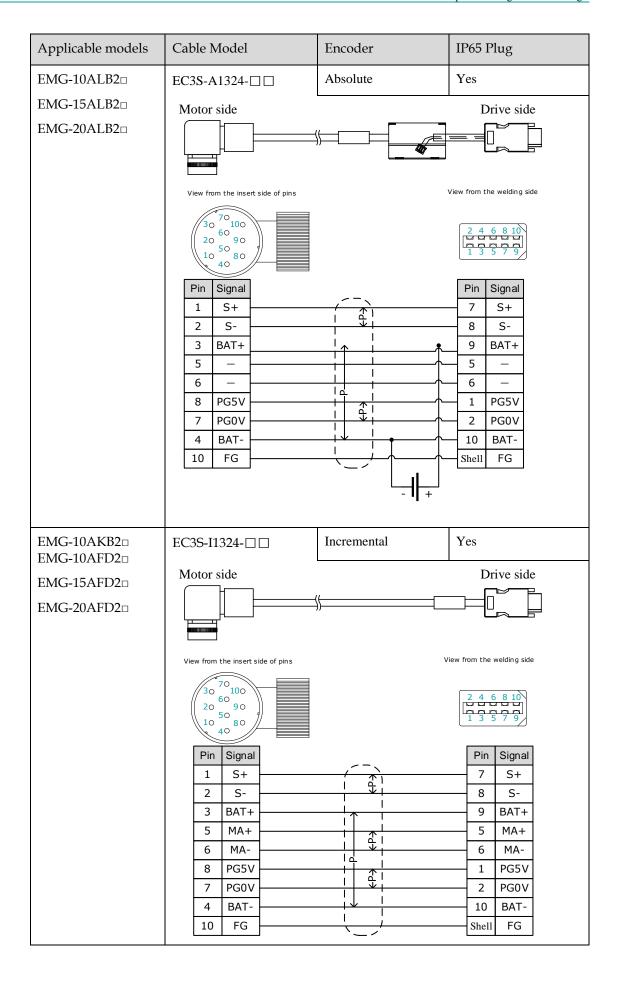
3.5.2 Encoder Cable Description

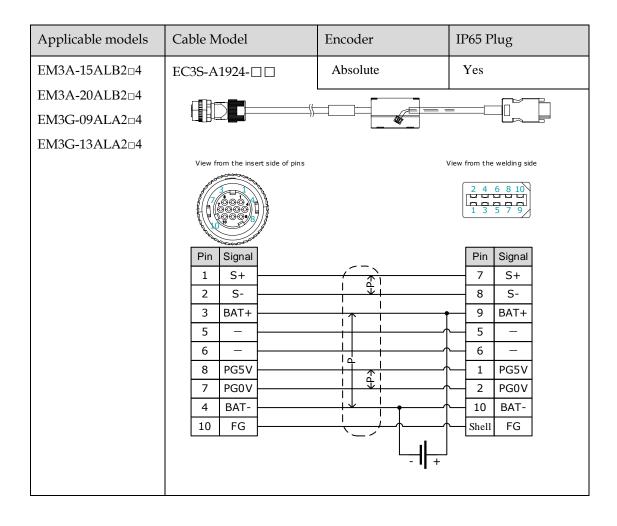
The encoder cable depends on the Motor model. The common models are shown in the table below.

		IP65	EC3S-I1124-03 EC3S-I1124-0 EC3S-A1124- 03 EC3S-A1124- 05 EC3S-I1724-03 EC3S-I1724-0 EC3S-A1724- 03 EC3S-A1724- 05 EC3S-I1924-0 EC3S-I1924-03 EC3S-I1924-0 EC3S-A1924- 05 EC3S-A1924- 05	ble		
Motor model	Encoder	plug		length is 5.0m	length is 10.0m	
EM3A-A5A EM3A-01A	Incremental	No	EC3S-I1124-03	EC3S-I1124-05	EC3S-I1124-10	
EM3A-02A EM3A-04A EM3A-08A	Absolute	No			EC3S-A1124- 10	
EM3A-08A EM3A-10A EM3J-02A	Incremental	Yes	EC3S-I1724-03	EC3S-I1724-05	EC3S-I1724-10	
EM3J-02A EM3J-04A EM3J-08A	Absolute	Yes			EC3S-A1724- 10	
EM3A-15A	Incremental	Yes	EC3S-I1924-03	EC3S-I1924-05	EC3S-I1924-10	
EM3A-20A EM3A-20D EM3A-30A EM3A-30D EM3A-40D EM3A-50DLA EM3G all modles	Absolute	Yes			EC3S-A1924- 10	
EMG-10A	Incremental	Yes	EC3S-I1324-03	EC3S-I1324-05	EC3S-I1324-10	
EMG-15A EMG-20A	Absolute	Yes	EC3S-A1324- 03	EC3S-A1324- 05	EC3S-A1324- 10	


		IP65	Motor power cable		
Motor model	Encoder	plug	length is 3.0m	length is 5.0m	length is 10.0m
EM3G-09A EM3G-13A	Absolute	Yes	EC3S-A1924- 03	EC3S-A1924- 05	EC3S-A1924- 10

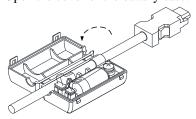

3.5.3 Encoder Cable Wiring Specifications


Wiring specifications for encoders vary from model to model. The recommended wire gauge for each model are listed below.

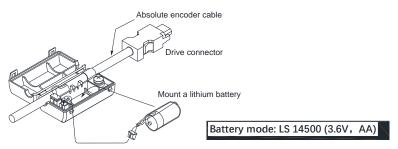

	Recommended wire gauge				
Model	AWG	Cross- sectional area (mm²)	Rated current (A)		
ED3L-A5AEA	14	2.075	8.2		
ED3L-01AEA	14	2.075	8.2		
ED3L-02AEA	14	2.075	8.2		
ED3L-04AEA	14	2.075	8.2		
ED3L-08AEA	13	2.627	10.4		
ED3L-10AEA	13	2.627	10.4		
ED3L-15AEA	12	3.332	13.1		
ED3L-20AEA	12	3.332	13.1		
ED3L-10DEA	14	2.075	8.2		
ED3L-15DEA	14	2.075	8.2		
ED3L-20DEA	13	2.627	10.4		
ED3L-30DEA	13	2.627	10.4		
ED3L-50DEA	10	5.26	20.8		
ED3L-75DEA	9	6.63	26.2		

The following shows the diagram and wiring description of each encoder cable.

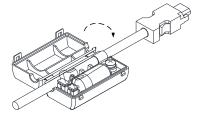
3.5.4 Battery Case Connection



- Absolute encoders are fitted on motors with an encoder type of L; e.g. EM3A-02ALA211. These encoders require a battery supply to retain the absolute encoder data when the Drive power is removed.
- Battery model: LS 14500 (3.6V, AA)
- Replace the battery if the alarm A.47 or A.48 was occurred, and perform the operations Absolute encoder multi-turn reset and Absolute encoder alarm reset.


Follow the instructions below to install or replace the battery case.

Step 1 Turn ON only the control power supply to the Drive.

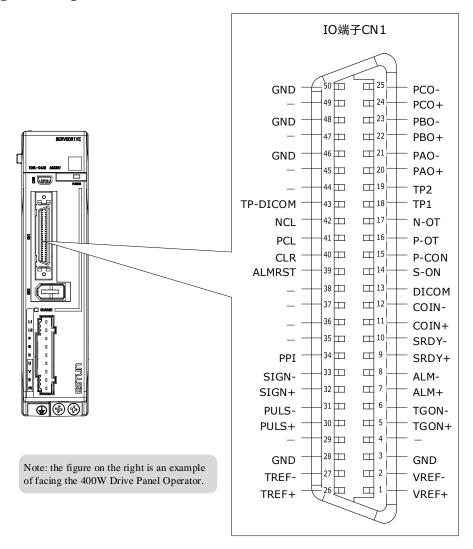

Step 2 Open the cover of the battery case.

Step 3 Remove the old battery and mount a new battery.

Step 4 Close the cover of the battery case.

Step 5 Repower up the Drive.

Step 6 Resert the Alarms.


- Perform the Fn011 and Fn010 by Panel Operator to reset the alarms, for details, see the section <u>Fn010 (Absolute encoder multi-turn reset)</u> and <u>Fn011 (Absolute encoder alarm reset)</u>.
- Also, you can reset the alarms by ESView V4, for details, see ESView Help Manual.

Step 7 Make sure the alarms have been cleared and the Drive operates normally.

----End

3.6 I/O Signal Connections

3.6.1 Signal Diagram

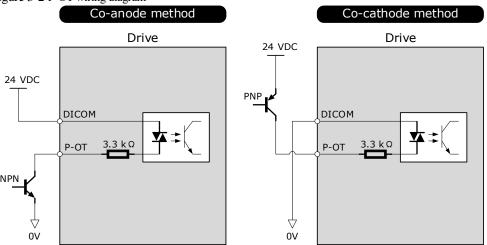
The signal definitions for the IO signals of all drives are the same. The signal name in the diagram above is predefined at the factory. You can can assign the following signals by Pn509, Pn510, and Pn511, see the section $\underline{5.7}$ IO Signal Allocation in detail.

3.6.2 Pin Layout

Pin	Name	Type	Function	
1	VREF+	Input	Speed reference differential input: (10V	
2	VREF-	Input	Speed reference differential input: ±10V.	
5	TGON+	Output	Motor rotation test: ON when the motor speed exceeds	
6	TGON-	Output	the set value.	
7	ALM+	Output	Servo alarm: OFF when an abnormal condition is	
8	ALM-	Output	detected.	
9	SRDY+	Output	Servo READY: When the control circuit and the main	
10	SRDY-	Output	circuit are turned on, it will be ON if there's no alarm and no overtravel for servo.	

Pin	Name	Туре	Function		
11	COIN+	Output	Positioning completed: ON after positioning is completed		
12	COIN-	Output		reaches the set value).	
13	DICOM	Common	24V power supp	r supply, to be supplied by user with a DC sly. ing voltage: DC 24V ±20%	
14	S-ON	Input	Servo ON: Moto	or becomes the turn-on state.	
			Select the functi	on of this signal by parameter settings.	
			Proportional Control Switch	Change the speed ring control mode from PI control to P control when it is ON.	
15	P-CON	Innut	Rotation Direction Switch	Use this signal to switch the direction of rotation when the function "Set speed selection internally" is used.	
13	P-CON	Input	Control Mode Switch	Switch the control method	
			Zero Clamp	When [Speed Control] is ON, the command speed is "0".	
			Command Pulse Prohibited	When [Position Control] is ON, the command pulse input will be stopped.	
16	P-OT	Input	Forward Rotation Prohibited	Overtravel prohibited: Stop the servo motor	
17	N-OT	Input	Reverse Rotation Prohibited	when it is OFF.	
18	TP1	Input	Touck Dack a Limit		
19	TP2	Input	TouchProbe Input		
43	TP-DICOM	Common	is to be supplied	ly for the input signal of the TouchProbe by user (DC 24V mains supply). Range tage: DC 24V ±20%	
20	PAO+	Output	Emondana 11	ividing mules outset Dhara A	
21	PAO-	Output	Encouer pulse d	ividing pulse output Phase A	
22	PBO+	Output	Encoder mules d	ividing pulse output Dhese D	
23	PBO-	Output	Encouer puise d	ividing pulse output Phase B	
24	PCO+	Output	Encoder mules d	ividing pulse output Phase C	
25	PCO-	Output	Encoder pulse d	ividing pulse output Phase C	
26	TREF+	Input	Torque referen	a input May input valtagar 1237	
27	TREF-	Input	1 orque reference	e input. Max input voltage: ±12V	
30	PULS+	Input	Form of pulse input:		
31	PULS-	Input	• Symbol + puls	se train	

Pin	Name	Туре	Function
32	SIGN+	Input	CCW+CW Two phase orthogonal pulse (90 %phase difference)
33	SIGN-	Input	• Two-phase orthogonal pulse (90 °phase difference)
34	PPI	Input	Power supply for open collector command ($2K\Omega/0.5W$ resistor is preset inside of the servo drive)
39	ALMRST	Input	Alarm reset: Release the servo alarm state.
40	CLR	Input	Position deviation pulse clear: to clear the position deviation pulse during position control.
41	PCL	Input	Forward Torque Limit
42	NCL	Input	Reverse Torque Limit
3,28,46,48,50	GND	Common	Signal Grounding
Other	_	_	Reserved

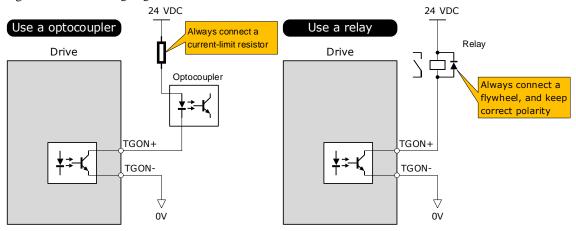

3.6.3 Wiring Description

Input Signals Wiring

The input signals of the Drive are divided into two groups, and the details are as following.

Taking the input signal P-OT as an example, Figure 3-2 shows the connection diagram by using an external 24 VDC power supply, and the wiring of other input signals wiring is the same as it.

Figure 3-2 P-OT wiring diagram



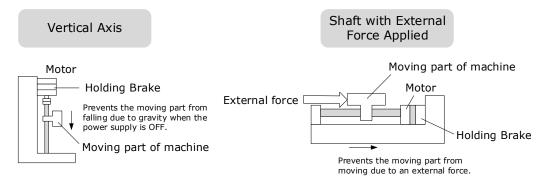
You can assign the input signals by Pn509 and Pn510. For the input signal allocation, see the section 5.7 <u>IO Signal Allocation</u>.

Output Signals Wiring

Taking the output signal TGON as an example, Figure 3-3 shows the connection diagram for using the optocoupler or relay, and the wiring of other output signals wiring is the same as it.

Figure 3-3 TGON wiring diagram

The maximum permissible voltage and current of the ptocoupler output circuit inside the servo drive are as follows:

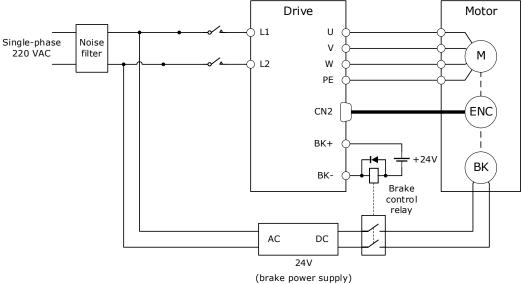

Maximum voltage: 30 VDC Maximum current: DC 50 mA

You can assign the output signals by Pn511. For the output signal allocation, see the section 5.7 <u>Output</u> Signal Allocations.

3.6.4 Holding Brake Wiring

A holding brake is used to hold the position of the moving part of the machine when the Drive is turned OFF so that moving part does not move due to gravity or an external force.

You can use the brake that is built into a Motor with a Brake, or you can provide one on the machine. The holding brake is used in the following cases.



- The brake built into a Motor with a Brake is a de-energization brake. It is used only to hold the Motor and cannot be used for braking. Use the holding brake only to hold a Motor that is already stopped.
- Keep the input voltage at least 21.6 V to make the brake work.
- The wiring of the brake signal has no polarity, please prepare a 24 VDC external power supply.
- Cable of 0.5mm² or above is recommended.

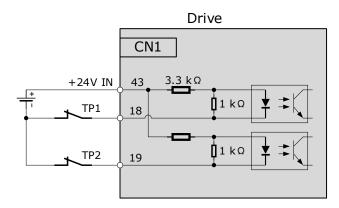
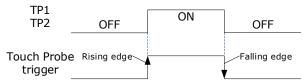
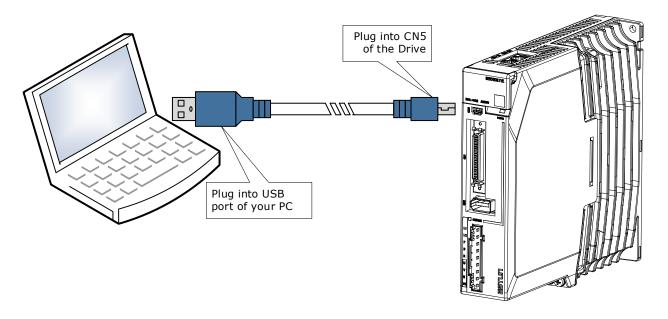

Taking the drives rated from 50W to 400W as an example, Figure 3-4 shows the connection diagram of the holding brake.

Figure 3-4 Holding brake wiring diagram



3.6.5 Touch Probe Wiring

You shall only use the terminals CN1-18 (TP1) and CN1-19 (TP2) for Touch Probe input signal, which has been allocated at factory. The following figure shows the example diagram for the connection.


The timing sequence between input signals and trigger is as shown in below.

3.7 USB Communication Cable

Connects your PC to a Drive with a USB Communication Cable, in order to make the online operation of ESView V4.

Connection Diagram

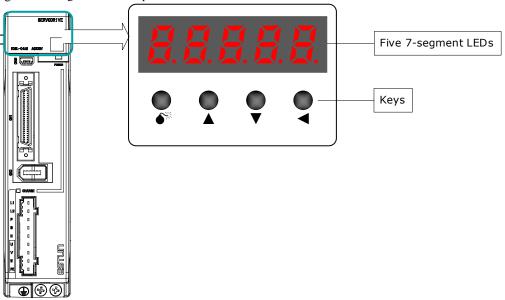
Cable Description

You can purchase the **USB Communication Cable** provided by ESTUN, or you can purchase the commercially available products yourself.

The plug connected to your PC is USB Type-A, and the plug connected to the Drive is Mini USB Type-B.

Chapter 4 Basic Settings

You can implement the functions of parameter setting, display, monitoring, alarm, adjustment, etc. of the Drive in the following two ways.


- Use the Panel Operator of the Drive
- Use the ESView V4 (Recommended)

4.1 Panel Operator

4.1.1 Key Names and Functions

There is a Panel Operator on the front of the Drive, as is shown in Figure 4-1.

Figure 4-1 Diagram of Panel Operator

The names and functions of the keys on the Panel Operator are as follows.

Key	Functions
M	Press [M] key to select a basic mode, such as the status display mode, utility function mode, parameter setting mode, or monitor mode.
A	Press [▲] Key to increase the set value.
•	Press [▼] Key to decrease the set value.
•	 Data setting key To display parameter setting and set value. To shift to the next digit on the left.

4.1.2 Basic Mode Selection

The basic modes include: Status Display Mode, Parameter Setting Mode, Utility Function Mode, and Monitor Mode.

Select a basic mode with [M] key to display the operation status, set parameters and operation references, as is shown in Figure 4-2.

Figure 4-2 Select a basic mode

Status Display

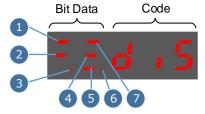
Parameter Setting

[M]

Monitor

[M]

Utility Function


4.1.3 Status Display Mode

Power ON the Drive and wait for a while, the Panel Operator will initially display the Servo Status.

The information displayed by the status is divided into two parts as Figure 4-3:

- The first two digits are called **Bit Data**, what indicates the signal states during the operation of Drive.
- The last three digits are called **Code**, what indicates the operation states of Driv.

Figure 4-3 Status Display

The display meaning of each segment on Bit Data are shown in Table 4-1, and they have different meanings under Speed or Torque Control Mode and Position Control Mode

Table 4-1 Display meaning of each segment on Bit Data

No	Speed Control/Torque Control		Position Contr	Position Control Mode		
NO	Meaning	Description	Meaning	Description		
1	Speed Coincidence (VCMP)	Lit when the difference between the Motor speed and reference speed is the same as or less than the value set in Pn501 (Default setting is 10 rpm). Always lit in Torque Control Mode.	Positioning Completion (COIN)	Lit if error between position reference and actual Motor position is below preset value in Pn500 (Default setting is 10 pulses).		
2	Servo OFF	Lit when servo is off. Not lit when servo is on.	Servo OFF	Lit when servo is off. Not lit when servo is on.		
3	Control Power ON	Lit when Drive control power is ON.	Control Power ON	Lit when Drive control power is ON.		
4	Speed Reference Input	Lit if input speed reference exceeds the value preset in Pn503 (Default setting is 20 rpm).	Reference Pulse Input	ON when the reference pulse is being input. OFF when no reference pulse is input.		
5	Torque Reference Input	Lit if input torque reference exceeds preset value (10% rated torque is standard setting).	Deviation Counter Clear Signal Input	Lit when deviation counter clear signal is input.		
6	Power Ready	Lit when main power supply circuit is normal.	Power Ready	Lit when main power supply circuit is normal.		
7	Rotation Detection (TGON)	Lit if Motor speed exceeds the value preset in Pn503 (Default setting is 20 rpm).	Rotation Detection (TGON)	Lit if Motor speed exceeds the value preset in Pn503 (Default setting is 20 rpm).		

The display meanings of Code are shown in Table 4-2.

Table 4-2 Display meanings of Code

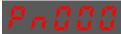
Display information	Description
4 4	Servo OFF (Motor Power OFF)
E FdY	Servo initialization failed (check the encoder connection)
	Run
	Servo ON (Motor Power ON)
FLE	Servo Alarm State
Fat	Forward Drive Prohibited
i not	Reverse Drive Prohibited
	(Forward and Reverse) Overtravel State

Display information	Description
F. R.D. (Alarm Number Display

NOTE: When the Drive is in Servo Alarm State, you shall check and correct the fault according to the Alarm Number Display, and then, you can press [◀] key to try to clear the current alarm.

4.1.4 Parameter Setting Mode

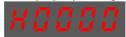
Functions can be selected or adjusted by setting parameters. There are two types of parameters.


- Function Parameters: the functions allocated to each digit of the Panel Operator can be selected.
- Adjustment Parameters: a parameter is set to a value within the specified range of the parameter.

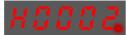
For a description of the parameter settings, please refer to the section <u>Chapter 11Parameters</u>.

Function Parameters Settin

The example below shows how to change parameter Pn003 (Application Function Selections 3) from **0000** to **1032**.


Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press [▲] key or [▼] key to select the parameter Pn003.


Step 3 Press [◀] key to display the current value of Pn003.

Step 4 Press and hold [◀] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Step 5 Press [\triangle] key twice, changing the value of the 5th digit from 0 to 2.

Step 6 Press [◀] key once, moving the flashing decimal point to the 4th digit.

Step 7 Press $[\blacktriangle]$ key three times, changing the value of the 4th digit from **0** to **3**.

Step 8 Press [◀] key twice, moving the flashing decimal point to the 2nd digit.

Step 9 Press $[\blacktriangle]$ key once, changing the value of the 2nd digit from $\mathbf{0}$ to $\mathbf{1}$.

- Step 10 Press the [M] key once to return to the display of Pn003 parameter value.
- Step 11 Press the [M] key once to display parameter Pn003.


After completing the function parameters setting, restart the Drive to take effect.

----End

Adjustment Parameters Setting

The example below shows how to change parameter Pn102 (Speed Loop Gain) from 100 to 85.

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press $[\blacktriangle]$ key or $[\blacktriangledown]$ key to select the parameter Pn102.

Step 3 Press [◀] key to display the current value of Pn102.

Step 4 Press [▲] key or [▼] key to change the value to 00085.

Press and hold $[\blacktriangle]$ key or $[\blacktriangledown]$ key to jump the setting value quickly.

Step 5 Press [◀] key or [M] key to return to the display of Pn102.

---- End

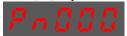
Panel Operator can only display 5 digits. The value of some adjustment parameters will be 6 digits or more. The display of the parameter values is as follows (take the display of parameter value -41943040 as an example).

Sign of top digits

Sign of middle digits

Top two digits

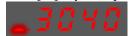
Middle four digits


Bottom four digits

Only when the value is with sign or negative number, "-" is displayed.

Lights when negative number is displayed

The example below shows how to change parameter Pn504 (Deviation Counter Overflow Alarm) from 41943040 to 42943240.


Step 6 Press [M] key several times to select the Parameter Setting Mode.

Step 7 Press [▲] key or [▼] key to select the parameter Pn504.

Step 8 Press [◀] key to display bottom four digits of the current value of Pn504.

Step 9 Press and hold [◀] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Step 10 Press [◀] key twice, moving the flashing decimal point to the 3rd digit.

Step 11 Press $[\blacktriangle]$ key twice, changing the value of the 3rd digit from 0 to 2.

Step 12 Press [◀] key four times, moving the flashing decimal point to the 3rd of middle four digits.

Step 13 Press [\blacktriangle] key once, changing the value of the 3rd digit from 1 to 2.

- Step 14 Press the [M] key once to return to the display of Pn504 parameter value.
- Step 15 Press the [M] key once to display parameter Pn504.

---- End

4.1.5 Monitor Mode

The Monitor Mode can be used for monitoring the reference values, I/O signal status, and Drive internal status

The Monitor Mode can be selected during Motor operation.

Select Monitor Mode

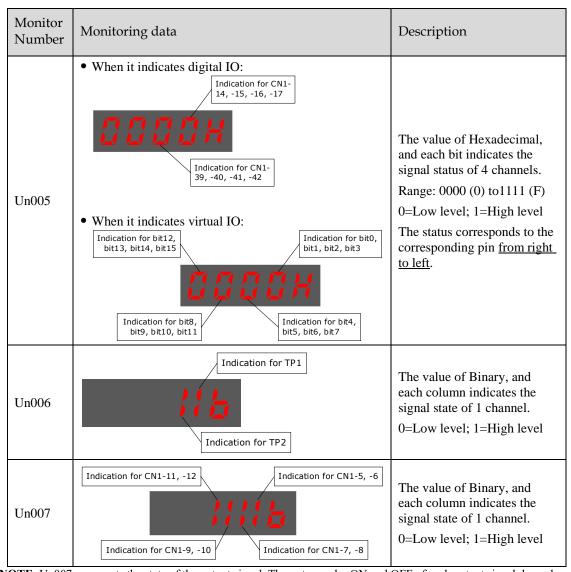
The example below shows how to display, the contents of monitor number Un003 (when the Motor rotates at 100).

Step 1 Press [M] key several times to select the Monitor Mode.

Step 2 Press [▲] key or [▼] key to select the monitor number Un003.

Step 3 Press [◀] key to display the data of Un003.

Step 4 Press [◀] key to return to the display of Un003.


---- End

Contents of Monitor Mode Displa

Monitor Number	Content of Display	Unit
Un000	Motor speed	rpm
Un001	Input value of speed reference	rpm
Un002	Input percentage of torque reference (relative to rated torque)	%
Un003	Internal torque reference (in percentage to the rated torque)	%
Un004	Encoder Rotation angle pulse number	_
Un005	Input signal monitor	_
Un006	Touch Probe signal monitoring	-
Un007	Output signal monitor	_
Un008	Number of input pulses within 1ms	1 pulse
Un009	Input reference pulse counter	_
Un011	Pulse deviation counter	_
Un013	Reference pulse	1 pulse
Un015	Percentage of load inertia	-
Un016	Motor Overload Ratio	%
Un019	Busbar Voltage	V
Un021	Encoder temperature	${\mathbb C}$

Monitor Number	Content of Display	Unit
Un022	Main board temperature	೦
Un024	PCP target position	_

The status (low level or high level) of input signal allocated to each input terminal is displayed.

NOTE: Un007 represents the state of the output signal. The optocoupler ON and OFF of each output signal depends on whether the output signal is inverted:

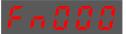
If the signal is not inverted, lit for turning the optocoupler ON, and not lit for turning the optocoupler OFF. If the signal is inverted, lit for turning the optocoupler OFF, and not lit for turning the optocoupler ON.

4.1.6 Utility Function Mode

This section describes how to apply the basic operations using the Panel Operator to run and adjust the Motor.

The following table shows the parameters in the Utility Function Mode.

Function Number	Name
Fn000	Alarm trace data display
Fn001	Initialize parameter settings
Fn002	JOG operation
Fn003	Auto adjustment of speed reference offset
Fn004	Manual adjustment of speed reference offset
Fn005	Automatic offset-adjustment of Motor current detection signal
Fn006	Manual offset-adjustment of Motor current detection signal
Fn007	Software version display
Fn009	Load inertia identification
Fn010	Absolute encoder multi-turn reset
Fn011	Absolute encoder alarm reset
Fn017	Auto-tuning tool
Fn018	PJOG operation


Fn000 (Alarm trace data display)

The alarm trace data display can display up to ten previously occurred alarms. The following are the steps to display the alarm trace data.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn000.

Step 3 Press [◀] key to display latest alarm number.

Step 4 Press [▲] key or [▼] key to view the other alarm data.

Step 5 Press the [◀] key to return to the display of the Fn000.

Press and hold [◀] key for 1 second or more to clear all the alarm trace data.

----End


Fn001 (Initialize parameter settings)

The following are the steps to initialize parameter settings.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn001.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press and hold [◀] key for 1 second to initialize the parameter settings, until Panel Operator displays and blinks **done**, which indicates the initialization of parameter setting has been completed.

Step 5 Release [◀] key to return to the display of the Fn001.

----End

Fn002 (JOG operation)

This utility function often used for trial operation, refers to the section 7.3.3 JOG Operation

Fn003 (Auto Adjustment of Speed Reference Offset)

For speed control, even if the speed reference is 0V (command reference is 0 or stopped), the servo motor may move at a very low speed. By this moment, use the offset adjustment function to clear the offset. Refer to "5.9.2 Adjustment of Speed Reference Offset".

Fn004 (Manual Adjustment of Speed Reference Offset)

Refer to "5.9.2 Adjustment of Speed Reference Offset" when using the Manual Adjustment of Speed Reference Offset.

<u>Fn005</u> (Automatic offset-adjustment of Motor current detection signal)

Motor current detection offset adjustment has performed at ESTUN before shipping. Basically, the user need not perform this adjustment.

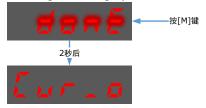
IMPORTANT

- Execute the automatic offset adjustment if the torque ripple is too big when compared with that of other Drives.
- Execute the automatic offset adjustment in the servo OFF state.

The following are the steps to execute the automatic offset adjustment.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn005.



Step 3 Press [◀] key, and Panel Operator displays as below.

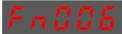
Step 4 Press [M] key to execute the automatic offset adjustment.

Panel Operator displays and blinks **done**, and 2 seconds later, it will return to previous display.

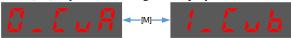
Step 5 Press the [◀] key to return to the display of the Fn005.

---- End

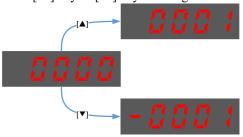
Fn006 (Manual offset-adjustment of Motor current detection signal)


To adjust the offset, perform the automatic adjustment (Fn005) first. And if the torque ripple is still big after the automatic adjustment, perform the manual offset-adjustment as follow.

- Please carefully execute the manual offset-adjustment, in case worsen the characteristics of the Motor.
- When executing the manual offset-adjustment, run the Motor at a speed of approximately 100 rpm, and adjust the phase-U and phase-V offsets alternately several times until the torque ripple is minimized.
- Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press $[\blacktriangle]$ key or $[\blacktriangledown]$ key to select the function number Fn006.

Step 3 Press [◀] key, and Panel Operator displays as below.


Step 4 Press [M] key for switching the display between 0_CuA (phase-U) and 1_Cub (phase-V).

Step 5 Select one phase display (e.g. 1_Cub, phase-V), and press and hold [◀] key for 1 second or more, Panel Operator will display the current offset value.

Step 6 Press [▲] key or [▼] key to change the offset value.

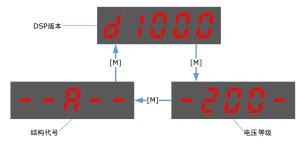
NOTE: the offset can be adjusted from -1024 to 1024.

- Step 7 Press and hold [◀] key for 1 second or more to return to the phase display.
- Step 8 Press [◀] key to return to the display of the Fn006.

----End

Fn007 (Software version display)

The following are the steps to display the software versions.


Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn007.

- Step 3 Press [◀] key to display the software versions.
- Step 4 Press [M] key serval time to display between DSP version, Voltage class and Structure code.

Step 5 Press [◀] key to return to the display of the Fn007.

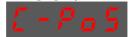
----End


Fn009 (Load inertia identification)

This utility function often used for tuning, refers to the section 8.7.1 Load inertia identification.

Fn010 (Absolute encoder multi-turn reset)

The following are the steps to reset the absolute encoder multi-turn data.


Step 1 Press $[\mathbf{M}]$ key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn010.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to reset the absolute encoder multi-turn data.

Step 5 Press [◀] key to return to the display of the Fn010.

----End

Fn011 (Absolute encoder alarm reset)

The following are the steps to reset the absolute encoder alarm.

Step 1 Press $[\mathbf{M}]$ key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn011.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to reset the absolute encoder multi-turn data.

Step 5 Press [◀] key to return to the display of the Fn011.

----End

Fn017 (Auto-tuning tool)

This utility function often use used for tuning, refers to the section 8.3.2 Auto-Tuning Tool.

Fn018 (PJOG operation)

This utility function often used for trial operation, refers to the section 7.5PJOG Run.

4.2 ESView V4

4.2.1 Installation

System Requirements

You need to provide for your own personal computer that meets the following basic hardware requirements.

Item	Description
og.	Windows 7 (32 位/64 位)
OS	Windows 10 (32 位/64 位)
	English (US), Chinese (Simply) version of the OS above.
CPU	1.6 GHz processor or more
Мотопу	System memory of 1 GB or more
Memory	Graphics memory of 64 MB or more
Hard Disk	Free space of 1GB or more
Communication	USB; RJ45
Dieplay	1,024×768 PIXEL or more
Display	24bit color (TrueColor) or more

Preparation

Please prepare the Windows operating system, communication cable, and a decompression software in advance.

Visit ESTUN official website www.estun.com to find and download ESView V4 on Technical Support > Download for getting the compressed file. For help, please contact ESTUN.

- Turn on the power supply of PC and start Windows. (Close down other software running.)
- Copy ESView V4 compressed file into an appropriate folder.
- Disconnect if the Drive is connected to the PC with the cable.

Install Software

Close other running software before installing the software and confirm that the Windows user has administrator privileges.

- Step 1 Extract the ESView V4 compressed file in an appropriate directory of your PC.
- Step 2 Double click the *ESView V4* installation program.

 The installation program will automatically start, as shown in the Figure 4-4.

Welcome to the ESView V4 Setup Wizard

The Setup Wizard will install ESView V4 on your computer.
Click Next to continue or Cancel to exit the Setup Wizard.

Figure 4-4 Start to instrall ESView V4 softwar

Step 3 Follow the instructions of the installation wizard to install ESView V4 to your PC.

---- End

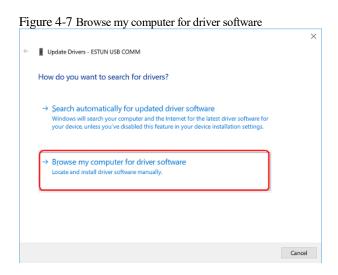
Install USB Driver

After installing the ESView V4 software successfully, you may also need to install the USB driver. If you have successfully installed a USB drive, you can skip what is described in this section, otherwise follow the steps below to install the USB driver.

IMPORTANT

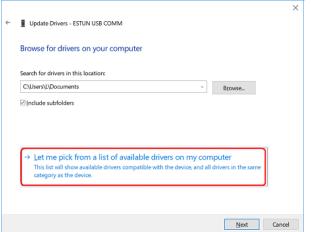
Since the USB Driver can only support one designated port, you shall reinstall the USB Driver if you replaced another port on the PC side, or you can use the previous port.

- Step 1 After installing the ESView V4 software successfully, connect the Drive to the PC by using the USB connection cable.
- Step 2 Open the main directory of ESView V4 software (default location is *C:\ESView V4*), and extract the **USB Drivers.rar** compressed file to an appropriate directory of your PC.
- Step 3 Open Device Manager.
 - For Win7 OS, select Start > Control Panel.
 Click Device Manager on the displayed All Control Panel Items.
 - For Win10 OS, just right-click **Start**, and select **Device Manager** on the pop-up menu.
- Step 4 An exclamatory mark attaches to the option **Other devices** > **ESTUN USB COMM** in **Device Manager** window, which indicates an error occurs in the driver and needs to update.


Figure 4-5 An error occurs in the driver Device Manager File Action View Help (m 🖈 🔐 🔃 🗊 💯 ✓

→ DESKTOP-K3A7BJ7 Audio inputs and outputs Batteries Bluetooth Cameras Computer Disk drives Display adapters Human Interface Devices TIDE ATA/ATAPI controllers Keyboards Mice and other pointing devices Monitors > P Network adapters Other devices ESTUN USB COMM Unknown device Portable Devices > 🛱 Print queues Processors

Step 5 Right-click **ESTUN USB COMM**, and select **Update driver** on the pop-up menu.



Step 6 Click Browse my computer for driver software on the Update Drivers dialog box.

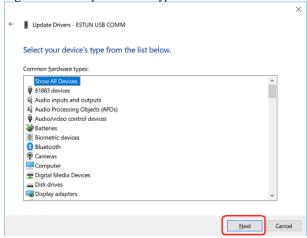

Step 7 Click Let me pick from a list of available drivers on my computer.

Figure 4-8 Let me pick from a list of available divers on my computer

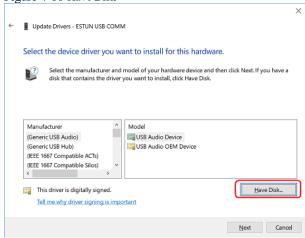
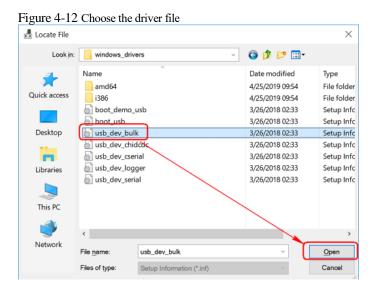

Step 8 Click Next.

Figure 4-9 Select your device's type from the list below

Step 9 Click Have Disk.

Figure 4-10 Have Disk



Step 10 Click Browse on the Install From Disk dialog box.


Figure 4-11 Install From Disk

- Step 11 Set the **Look in** as the directory of *ESView V4* decompressed file *USB Drivers*\windows_drivers on the **Locate File** dialog box.
- Step 12 Choose *usb_dev_bulk.inf*, and then click **Open**.

- Step 13 Click **OK** on the **Install From Disk** dialog box.
- Step 14 Choose Generic Bulk Device, and then click Next.

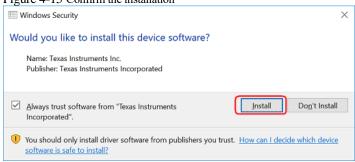

Step 15 Click Yes on the Update Driver Warning dialog bos.

Figure 4-14 Confirm the driver updating

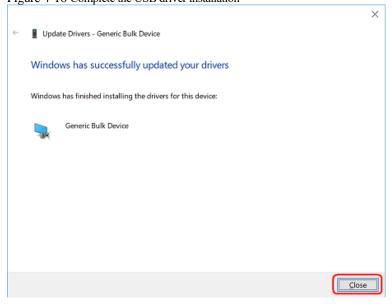

Step 16 Wait for a while, and then click Install on the Windows Security dialog box.

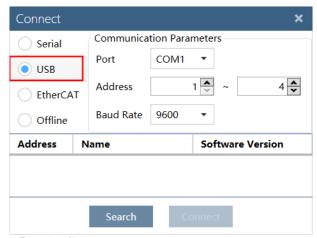
Figure 4-15 Confirm the installation

Step 17 The driver will be automatically installed to your PC, and then the installation result will be displayed. Click **Close** to complete the USB driver installation.

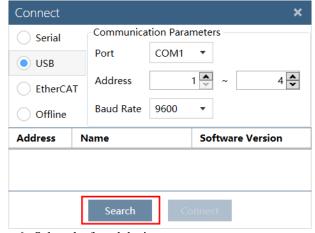
Figure 4-16 Complete the USB driver installation

----End

4.2.2 Start ESView V4


Online Operation

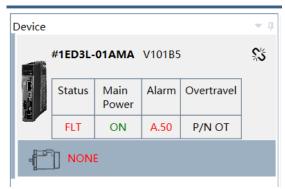
The parameters only can be written into or read from the Drive under the online operation. It is recommended that you perform an online operation for the first time to set the Drive.


You need to connect the Drive to the PC by using the USB connection cable before the online operation.

- Step 1 Connect the Drive to the PC by using the USB connection cable.
- Step 2 Select **Programs** > **ESView V4** > **ESView V4** from the Windows **Start** Menu. Also, you can find and click *ESView V4* shortcut on the desktop of Windows.
- Step 3 The **Connect** dialog box will be displayed.

 If you had started *ESView V4*, select **Home** > **Connect** in the **Menu** Bar.
- Step 4 Select USB.

Step 5 Click Search.


Step 6 Select the found device.

Step 7 Click Connect.

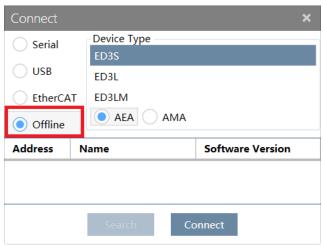
Step 8 The connected device will be displayed in the **Device** list on the left of the *ESView V4* main windows.

Now, you can make the necessary settings for the Drive or Motor in real time.

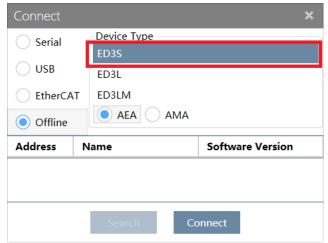
The **Device** list can display all the device you had connected or created (including online and offline), and their basic status.

If you want to delete a device from the **Device** list, click in the top right, and then click **OK** on the pop-up warning box.

----End


Offline Operation

In offline operation, users do not need to connect any equipment, can perform oscilloscope, FFT, mechanical analysis and other image operations.


Although it is not necessary to connect the actual drive, some functions are limited and cannot be set correctly.

- Step 1 Select **Programs** > **ESView V4** > **ESView V4** from the Windows **Start** Menu. Also, you can find and click *ESView V4* shortcut on the desktop of Windows.
- Step 2 The **Connect** dialog box will be displayed.

 If you had started *ESView V4*, select **Home** > **Connect** in the **Menu** Bar.
- Step 3 Select Offline

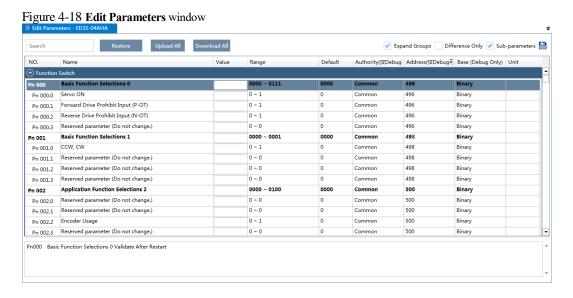
Step 4 Select the desired **Device Type**, e.g. ED3S.

Step 5 Click Connect.

Step 6 The created device will be displayed in the **Device** list on the left of the *ESView V4* main windows.

Since there is no online connection to a Drive, the functions that you can use are restricted.

----End

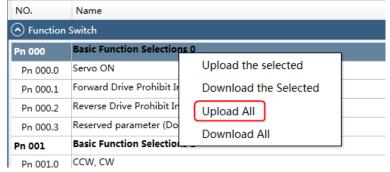

4.2.3 Edit Parameters

Follow the below procedure to open the Edit Parameters window.

Step 1 Select Parameters > Edit Parameters in the Menu Bar of the ESView V4 main windows.

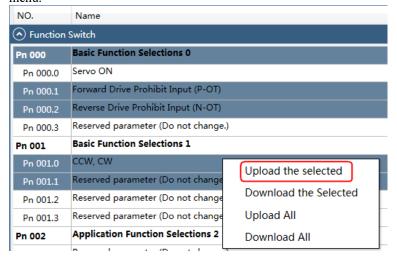
Step 2 The Edit Parameters window will be displayed in Function Display Area.

Upload Parameters


• Upload All

In order to read all parameters from the Drive and fill them into **Value** column of the parameters list, you can:

- Click Upload All in the Edit Parameters window



- Right-click the parameters list where cannot be edited, and select Upload All in the pop-up menu.

• Upload the Selected

Drag the mouse to select the desired parameters, or you can hold **Ctrl** key and click the desired parameter, and then right-click a selected parameter, and select **Upload the selected** in the pop-up menu.



You can only fulfill the **Upload Parameter** function in **Online operation**. If a warning dialog box **Unable to upload the parameters** is displayed, check the connection between PC and the Drive.

Modify Parameters

When the parameters have been uploaded from the device, you can modify them on the **Value** column. If a value has been modified, the background of the textbox can be changed, as shown in Figure 4-19.

Figure 4-19 Display after editing parameters

You can refer to the description displayed on the underside of the parameter list for the parameter modification.

Value NO. Name Range Function Switch Basic Function Selections 0 0000 ~ 0111 Pn 000 Servo ON 0 ~ 1 Pn 000.0 0 Forward Drive Prohibit Input (P-OT) Pn 000.1 Pn 000.2 Reverse Drive Prohibit Input (N-OT) Reserved parameter (Do not change.) 0 ~ 0 Pn 000.3 0 Pn 001 Basic Function Selections 1 0000 ~ 0001 ccw, cw 0 ~ 1 Pn 001.0 Pn 001.1 Reserved parameter (Do not change.) 0 ~ 0 0 Pn 001.2 Reserved parameter (Do not change.) 0 0 ~ 0 Pn 001.3 Reserved parameter (Do not change.) 0 ~ 0 0 **Application Function Selections 2** 0000 ~ 0100 Pn 002 0100 Pn 002.0 Reserved parameter (Do not change.) 0 ~ 0 Pn 002.1 Reserved parameter (Do not change.) 0 ~ 0 0 Encoder Usage 0 ~ 1 Pn 002.2 1 Reserved parameter (Do not change.) 0 ~ 0 Pn 002.3 Application Function Selections 3 0000 ~ 1032 Pn 003 0000

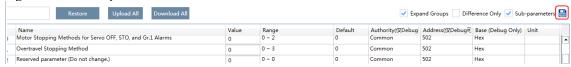
[0] Enabled. The motor is stopped according to the setting of Pn003.1 when the overtravel occurs.

Figure 4-20 Details description of the parameter

[1] Disabled.

Pn000.2 Reverse Drive Prohibit Input (N-OT)

Click Search input box on the Edit Parameters window, and type the keyword you want to search. The keyword, including NO, Name, Value, Range, Default, Unit, as well as description of each parameter.


If you want to search multiple items at once, add one or more space between keywords that lists all the parameters that match any of the keywords.

Save Parameters

Follow the below procedure to save the current settings as an offline file into the PC.

Step 1 Click in the Edit Parameters window.

Figure 4-21 Save the parameters

Step 2 Choose the desired files in the **Save As** dialog box.

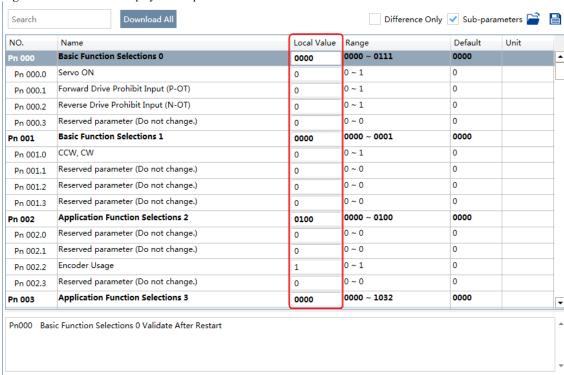
Step 3 Click Save.

----End

Import Parameters

You can fulfill Import function, importing the offline parameters file into the online Drive.

Step 1 Select **Parameters** > **Import** in the **Menu Bar** of the ESView V4 main windows.

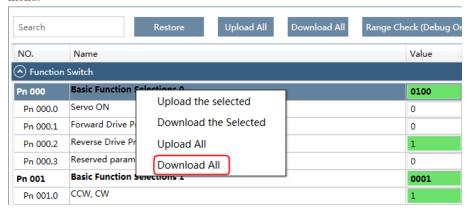

Figure 4-22 Select Import

- Step 2 Select a proper offline parameter file (*.esvpa) in the pop-up **Open** dialog box.
- Step 3 The **Import** window will be displayed in **Function Display Area**.

And, the Local Value in the offline parameters file are filled into the parameter list.

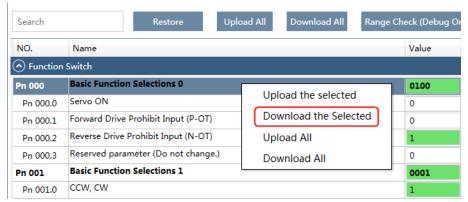
Figure 4-23 Local Value displayed in Import window

Step 4 在 Before importing parameters into the Drive, you can edit and download the parameters.


----End

Download Parameters

- Download All
- In order to write all parameters of the parameters list into the Drive, you can:
- Click Download All in the Edit Parameters window.



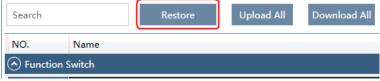
Right-click the parameters list where cannot be edited, and select **Download All** in the pop-up menu.

• Download the Selected

Drag the mouse to select the desired parameters, or you can hold **Ctrl** key and click the desired parameter, and then right-click a selected parameter, and select **Download the Selected** in the pop-up menu.

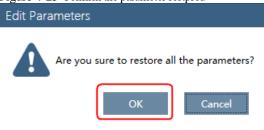
You can only fulfill the Download Parameter function in **Online Operation**. If a warning dialog box **Unable to download the parameters** is displayed, check the connection between PC and the Drive.

Restore Parameters


Make sure that it is necessary to restore the parameters as default setting before fulfilling the **Restore Parameters** function.

Step 1 Click **Restore** in the **Edit Parameters** window.

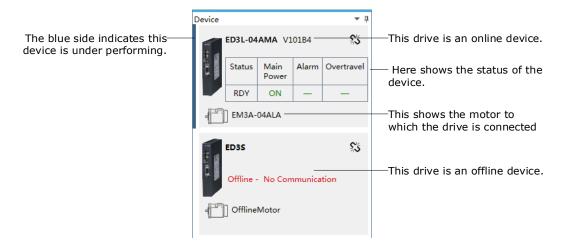
Figure 4-24 Restore parameters


Search

Restore

Step 2 Read the content on the warning dialog box and click **OK**.

Figure 4-25 Confirm the parameter restpred


Step 3 ESView V4will send the **Restore Parameters** command to the Drive, and then the Drive will execute the **Restore Parameters**.

----End

4.2.4 Monitor

Device Status

The **Device** list can display all the device you had connected or created (including online and offline), and their basic status.

IO Monitor

Use the Monitor function for displaying the main parameters of the device and the I/O signal information.

Step 1 在 Select **Monitor** > **Monitor** in the **Menu Bar** of the *ESView V4* main windows.

Figure 4-26 Select Monitor

You can also move the cursor upon **Monitor** on the right side of the main window of ESView V4 and stay for a while, the **Monitor List** will be displayed.

Step 2 The Monitor List will display the information of DATA MONITOR and I/O MONITOR.

Figure 4-27 Monitor List **DATA MONITOR** Name Value Unit Speed Feedback 0 r/min Internal Torque Reference 0 96 Rotation Pulses 364883 1Pulse Setting Pulse Counter 70232817 1Pulse Encoder Multi-turn 8 Encoder Single-turn 2042604 Load Inertia Percentage 0 96 Overload Ratio 0 % Present Location 0 1Pulse Error Pulse Counter 0 1Pulse TP2 0 TP1 0 Second Encoder A 0 Second Encoder B 0 Second Encoder C 0 STO HWBB2 1 STO HWBB1 Busbar Voltage 313 Encoder Temperature 33 °C Power Plate Temperature 33 °C External Feedback Count 0 I/O MONITOR Name Unit Input Signal State CN1_14 0 CN1_15 0 CN1_16 0 CN1_17 0 CN1_18 0 Output Signal State CN1_06/07 0 CN1_08/09 1

Chapter 5 Application Functions

5.1 Power Supply

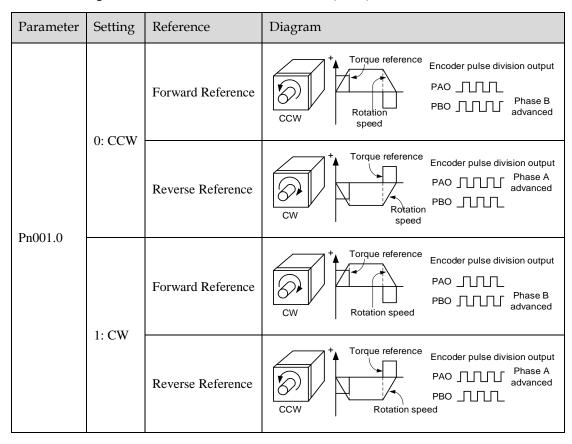
The main circuit and control circuit of the Drive can be operated with AC power input. When AC power input is selected, single- phase or three phase power input can be used. You shall to set the parameter Pn007.1 and Pn007.3 (use AC power input) according to the applicable power supply.

Parameter	Setting	Meaning	When Enabled
	0	Use a single-phase AC power supply.	
Pn007.1	1	Use a three-phase AC power supply. NOTE: This setting is invalid for the Drive power from 50W to 400W.	After restart
	2	AC power supply frequency is 50Hz.	
Pn007.3	0	AC power supply frequency is 60Hz.	
F11007.3	1	Use a single-phase AC power supply.	

An alarm A.24 (Main Circuit Power Supply Wiring Error) may be occurred if the setting of Pn007.1 be consonant with not match the applicable power supply.

When using AC power supply and DC power supply to connect to the driver, please make a terminal connection.

Ac power supply should be connected to the L1/L2/L3 terminals and L1C/L2C terminals of the driver.



- DC power supply should be connected to the B1/decile terminal and one terminal and L1C/L2C terminal of the driver.
- Before using the DC power input, please be sure to set Pn007.1=2 before entering the main loop to avoid burning the internal components of the driver.
- When the DC power supply is input, set the fuse on the power supply wiring.
- No regeneration is performed when using the DC power input, so please perform regenerative energy treatment on the power supply side.

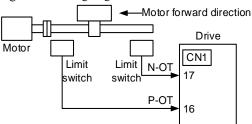
5.2 Motor Rotation Direction

You can reverse the direction of Motor rotation by changing the setting of Pn001.0.

The default setting for Forward Rotation is counterclockwise (CCW) as viewed from the Drive end.

5.3 Overtravel Limit

5.3.1 Function Description


Overtravel is a safety function of the Drive that forces the Motor to stop in response to a signal input from a limit switch that is activated when a moving part of the machine exceeds the safe range of movement.

The overtravel signals include the P-OT (Forward Drive Prohibit) and the N-OT (Reverse Drive Prohibit) signals.

You use the P-OT and N-OT signals to stop the machine by installing limit switches at the positions where you want to stop the machine that is operated by the Motor.

An example of wiring for the P-OT signal and the N-OT signal is shown in Figure 5-1.

Figure 5-1 Wiring diagram for the overtravel

Using the overtravel function is not necessary for rotating applications such as rotary tables and conveyors. No wiring for overtravel input signals is required.

- To prevent accidents that may result from contact faults or disconnections, use normally closed limit switches.
 - Moreover, never change the default settings of the polarity of the overtravel signals (P-OT and N-OT).
- When using the Motor on a vertical axis, the workpiece may fall in the overtravel condition. To prevent this, always set the zero clamp after stopping with Pn003.1=2.

5.3.2 Connecting the Overtravel Signal

To use the overtravel function, connect the following overtravel limit switch input signal terminals.

Туре	Name	Pin	Setting	Meaning
	P-OT	CN1-16	ON	Forward run allowed. Normal operation status.
Innut	F-01	CIVI-10	OFF	Forward run prohibited. Forward overtravel.
Input	NOT	CN1 17	ON	Reverse run allowed. Normal operation status.
	N-O1	N-OT CN1-17		Reverse run prohibited. Reverse overtravel.

5.3.3 Enabling/Disabling the Overtravel Signal

Parameters can be set to disable the overtravel signal. If the parameters are set, there is no need to wire the overtravel input signal.

Parameter	Setting	Meaning	When Enabled
D _m 000 1	0 [Default]	Inputs the Forward Drive Prohibited (P-OT) signal from CN1-16. [Default]	
Pn000.1	Disables the Forward Drive Prohibited (P-OT) signal. (Always allow forward rotation)		After restart
D-000 2	0 [Default]	efault] Inputs the Reverse Drive Prohibited (N-OT) signal from CN1-15. [Default]	
Pn000.2	1	Disables the Reverse Drive Prohibited (N-OT) signal. (Always allow reverse rotation)	

In addition, you can disable the overtravel limit function by not set the values 1 and 2 to parameter Pn509 (not allocate the P-OT signal and N-OT signal).

5.4 Motor Stopping Methods

Following 4 ways are available to stop the drive alarming (Gr.1 or Gr.2), OT state, and servo OFF occurs:

Stop method	Meaning
Stopping by dynamic brake	The electric circuits are internally connected to stop the Motor quickly.
Coasting to a stop	The Motor stops naturally due to friction during operation.
Reverse brake	Emergency stop torque is used to decelerate the Motor to a stop.
Do not stop	Regards Alarms as the Warnings, and the Motor will not be stopped.

Also, you can let the Motor enter the following states after the Motor stops.

State after Stopping	Meaning
Coasting	The Drive does not control the Motor (The machine will move in response to a force from the load).
Dynamic Brake (DB)	The electric circuits are internally connected to hold the Motor.
Zero clamping	A position loop is created and the Motor remains stopped at a position reference of 0. (The current stop position is held.)
Operation	The state in which the Drive continues to control the Motor.

5.4.1 Motor Stop Methods for Gr.1 Alarms, Safety State and Servo OFF

You can select the Motor stopping methods for Gr.1 Alarms occur, in Safe state or Servo OFF by setting the parameter Pn003.0.

Parameter	Setting	Stop Method	After Stopping	When Enabled
	0[Default]	Stopping by dynamic brake	Coasting	
Pn003.0	1	Stopping by dynamic brake	Dynamic Brake	After restart
	2	Coasting to a stop	Coasting	

5.4.2 Motor Stop Methods for Overtravel

You can select the Motor stopping methods for overtravel occurs by setting the parameter Pn003.1.

Parameter	Setting	Stop Method	After Stopping	When Enabled	
	0 [Default]	Stopping by dynamic brake	Coasting		
Pn003.1	1 Inertial running stops		Coasting	After restart	
	2	Reverse brake	Zero clamping	After restart	
	3	Reverse brake	Coasting		

NOTE: The speed reference is set to 0 during the reverse brake, so that the soft stat function is unavailable. In addition, you shall set a reverse brake torque for stopping the Motor (Pn405).

5.4.3 Motor Stop Methods for Gr.2 Alarms

You can select the Motor stopping methods for Gr.2 Alarms occur by setting the parameter Pn004.0.

Parameter	Setting	Stop Method	After Stopping	When Enabled	
	0 [Default]	Stop by dynamic brake	Coasting		
	1	Stop by dynamic brake	Dynamic Brake		
Pn004.0	2	Coast to a stop	Coast	After restart	
P11004.0	3	Reverse brake	Dynamic Brake		
	4	Reverse brake	Coast		
	5	Do not stop, regard as a warning	Operation		

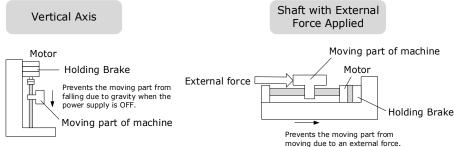
5.4.4 Reverse Brake Torque Limit Setting

If Pn004.0 is set to 3 or 4, the Motor will be decelerated to a stop using the torque set in Pn405 as the maximum torque.

Parameter	Name	Range	Unit	Default	When Enabled
Pn405	Reverse Brake Torque Limit	0 to 350	1%	300	Immediately

- This setting is a percentage of the rated torque.
- The default setting is 300%. This setting is large enough to allow you to operate
 the Motor at the maximum torque. However, the maximum stop torque that you
 can actually use is the maximum torque of the Motor.

5.5 Holding Brake

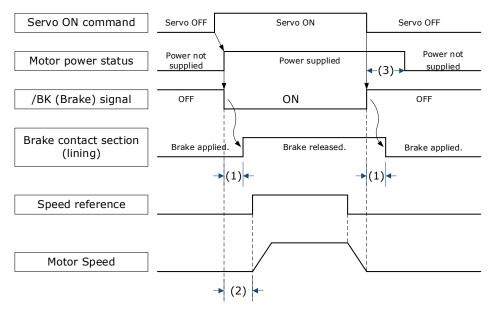

5.5.1 Function Description

A holding brake is used to hold the position of the moving part of the machine when the Drive is turned OFF so that moving part does not move due to gravity or an external force.

You can use the brake that is built into a Motor with a Brake, or you can provide one on the machine.

The holding brake is used in the following cases.

Figure 5-2 The used of holding brake



The brake built into a Motor with a Brake is a de-energization brake. It is used only to hold the Motor and cannot be used for braking. Use the holding brake only to hold a Motor that is already stopped.

5.5.2 Brake Operating Sequence

You must consider the time required to release the brake and the time required to brake to determine the brake operation timing, as described below.

- (1): The brake delay times for Motors with Holding Brakes.
- (2): Before you output a reference from the host controller to the Drive, wait for at least 50 ms plus the time required to release the brake after you send the S-ON command.
- (3): Use Pn506 (Servo OFF Waiting Time), Pn507 (Brake Enable Speed Threshold), and Pn508 (Brake Enable Waiting Time) to set the timing of when the brake will operate and when the servo will be turned OFF.

- Time Required to Release Brake: The time from when the /BK (Brake) signal is turned ON until the brake is actually released.
- Time Required to Brake: The time from when the /BK (Brake) signal is turned OFF until the brake actually operates.

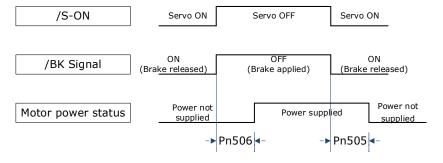
Table 5-1 抱闸参数表

Motor model	Voltage [VDC]	Braking torque [N·m]	Field current [Arms]	Brake action time [ms]	Brake opening time [ms]	power [W]	Coil resistance [Ω]	Back lash [°]
EM3A- A5A EM3A- 01A	24V±10%	≥0.32		40	20	4		
EM3A- 02A EM3A- 04A	24V±10%	≥1.5		25	50	7.4		
EM3A- 08A EM3A- 10A	24V±10%							

Motor model	Voltage [VDC]	Braking torque [N·m]	Field current [Arms]	Brake action time [ms]	Brake opening time [ms]	power [W]	Coil resistance [Ω]	Back lash [°]
EM3A- 15A EM3A- 20A	24V±10%							
EM3G- 09A EM3G- 13A	24V±10%	≥20		40	100	23		
EMG-10A EMG-15A EMG-20A	24V±10%							

5.5.3 /BK (Brake) Signal

The /BK signal is turned OFF (to operate the brake) when the Servo is turned OFF or when an alarm is detected. You can adjust the timing of brake operation (i.e., the timing of turning OFF the /BK signal) with the Servo OFF Waiting time (Pn506).


Туре	Signal	Pin	Signal Status	Meaning
Output	DV	Allocated by	ON	Releases the brake.
	/BK	Pn511	OFF	Activates the brake.

The /BK signal is not allocated in default setting, set its allocation in Pn511.

Parameter	Setting	+ Pin	- Pin	Meaning
Pn511.0	4	CN1-11	CN1-12	The /BK signal is output from output terminal CN1-11 and CN1-12.
Pn511.1	4	CN1-5	CN1-6	The /BK signal is output from output terminal CN1-5 and CN1-6.
Pn511.2	4	CN1-9	CN1-10	The /BK signal is output from output terminal CN1-9 and CN1-10.

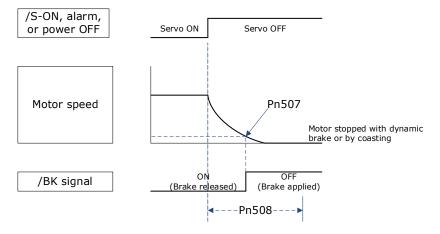
5.5.4 Output Timing of /BK Signal when Motor is Stopped

When the Motor is stopped, the /BK signal turns OFF as soon as the S-OFF (Servo OFF) command is received. Use the servo OFF delay time (Pn506) to change the timing to turn OFF power supply to the Motor after the S-OFF command is input.

Parameter	Name	Range	Unit	Default	When Enabled
Pn505	Servo ON Waiting Time	-2000 to 2000	ms	0	Immediately
Pn506	Servo OFF Waiting Time	0 to 500	10ms	0	Immediately

- Set Pn505 as a positive value, when S-ON command is received, the /BK signal will be output first, and then power supplied to the Motor after waiting for this setting.
- Set Pn505 as a negative value, when S-ON command is received, power supplied to the Motor immediately, and then output the /BK signal after waiting for this setting.

When the Motor is used to control a vertical axis, the machine moving part may move slightly due to gravity or an external force.


You can eliminate this slight motion by setting the servo OFF delay time (Pn506) so that power supply to the Motor is stopped after the brake is applied.

Power supply to the Motor will be stopped immediately when an alarm occurs, regardless of the setting of this parameter. The machine moving part may move due to gravity or an external force before the brake is applied.

5.5.5 Output Timing of /BK Signal when Motor is operating

If an alarm occurs or S-OFF command is received while the Motor is operating, the Motor will start stopping and the /BK signal will be turned OFF. You can adjust the timing of /BK signal output by setting the Brake Enable Waiting Time (Pn508).

The /BK signal goes to H level (brake ON) when either of the following conditions is satisfied:

- When the Motor speed falls below the level set in Pn507 after the power to the Motor is turned OFF.
- When the time set in Pn508 is exceeded after the power to the Motor is turned OFF.

Parameter	Name	Range	Unit	Default	When Enabled
Pn507	Brake Enable Speed Threshold	10 to 100	1rpm	100	Immediately
Pn508	Brake Enable Waiting Time	10 to 100	10ms	50	Immediately

5.6 Encoder Settings

5.6.1 Absolute Encoder Selection

Absolute encoders are fitted on motors with an encoder type of L; e.g. EM3A-02A<u>L</u>A211. These encoders require a battery supply to retain the absolute encoder data when the Drive power is removed.

With a system that uses an absolute encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power supply to the system is turned ON.

There are two types of encoders for the Motors. The usage of the encoder is specified in Pn002.2.

Parameter	Setting	Meaning	When Enabled
Pn002.2	0 [Default]	Use the encoder as an absolute encoder.	After restart
F11002.2	1	Use the encoder as an incremental encoder.	After restart

The default setting of the Drive uses an absolute encoder. If the Motor encoder is an incremental encoder, an A47 alarm or an A48 alarm will occur when the Drive is first powered up.

IMPORTANT

In this case, set Pn002.2=1 and restart the Drive.

5.6.2 Encoder Alarm Resetting

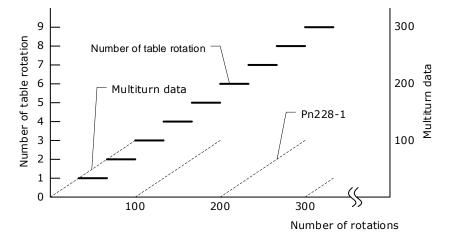
If alarm A.47 or A.48 occurs, replace the battery as soon as possible. After replacing the battery, perform the operation **Absolute encoder alarm reset** and **Fn010** (**Absolute encoder multi-turn reset**.

For details about how to replace a battery and how to perform the replacement, see 3.5.4 Installing or Replacing a Battery.

5.6.3 Multiturn Limit Setting

The multiturn limit is used in position control for a turntable or other rotating body.

For example, consider a machine that moves the turntable shown in the following diagram in only one direction.



Because the turntable moves in only one direction, the upper limit to the number of revolutions that can be counted by an absolute encoder will eventually be exceeded.

The multiturn limit is used in cases like this to prevent fractions from being produced by the integral ratio of the number motor revolutions and the number of turntable revolutions.

For a machine with a gear ratio of n:m, as shown above, you can set Pn228 (OB 30A9h in EtherCAT) as \mathbf{m} , and the value of $\mathbf{m} - \mathbf{1}$ will be the setting for the multiturn limit setting.

The relationship between the number of turntable revolutions and the number of motor revolutions is shown in the following figure.

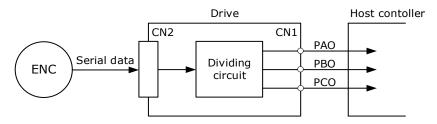
Parameter	Name	Range	Unit	Default	When Enabled
Pn228	Multiturn limit	0 to 65535	1 rev	10	After restart

Note: This parameter is enabled when you use an absolute encoder.

The data will change as shown below when this parameter is set to anything other than the default setting.

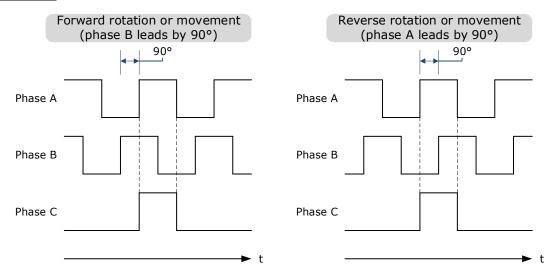
- If the motor operates in the reverse direction when the multiturn data is 0, the multiturn data will change to the value set in (Pn228-1).
- If the motor operates in the forward direction when the multiturn data is at the value set in (Pn228-1), the multiturn data will change to 0.

The multiturn data will always be 0 in the following cases. It is not necessary to reset the absolute encoder in these cases.


- When you use a single-turn absolute encoder
- When you set Pn002.2 = 1 (Use the encoder as an incremental encoder)

5.6.4 Encoder pulse dividing output

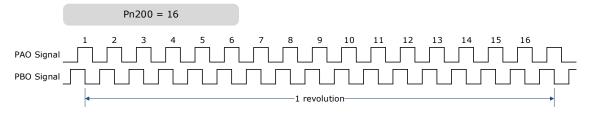
Pulse dividing signals


Encoder pulse dividing pulse output processes the signals sent from the encoder inside the driver, and outputs such signals to the outside in the form of two-phase pulses (Phase A, and Phase B) with 90° phase differential. It can be used as position feedback in the host controller.

Signal Name	Connector Pin Number	Name	Description
PAO+	CN1-20	Encoder pulse dividing	PG pulse dividing (Pn200): the number of
PAO-	CN1-21	output Phase A	pulses when motor rotates a single revolution
PBO+	CN1-22	Encoder pulse dividing	The phase differential between phase A and
PBO-	CN1-23	output Phase B	phase B here is electrical angle of 90 °
PCO+	CN1-24	Encoder pulse dividing	The natural phase C output of anonder
PCO-	CN1-25	output Phase C	The actual phase C output of encoder

Note: Even in the reverse mode (Pn001.0=1), the pulse dividing output phase form is the same as the standard setting (Pn001.0=0).

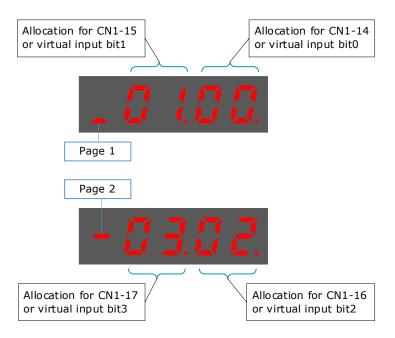
Output Phase Form


Pulse Dividing Ratio Setting

Encoder pulse dividing means that the divider converts data into the pulse density (Pn200) set by the user parameter based on the pulse data of the motor encoder, and outputs it. The setting unit is number of pulses/revolution.

No.	Name	Range	Unit	Default	When Enabled
Pn200	PG dividing ratio	16 to 16384	1 pulse	16384	After restart

- Set the number of pulses for PG output signals (PAO,/PAO,PBO,/PBO) externally from the servo drive through Pn200.
- Feedback pulses from the encoder per revolution are divided inside the servo drive by the number set in Pn200 before being output.
- Set the encoder pulse dividing ratio according to the system specifications of the machine or host controller.
- The setting of the encoder pulse dividing number is restricted by the encoder's resolution.


[Output Example] Pn200=16 (when 16 pulses are output per revolution), the output examples of signals of encoder pulse dividing output phase A (PAO) signal and encoder pulse dividing output phase B (PBO) are shown below.

5.7 IO Signal Allocation

Functions are allocated to the pins on the I/O signal connector (CN1) in advance. You can change the allocations and the polarity for some of the connector pins. Function allocations and polarity settings are made with parameters.

Operation panel can only display 5 digits. When distributing IO signals, it is necessary to display or set all the signals by page turning. The display instructions are detailed as follows (take Pn509 as an example).

5.7.1 Input Signal Allocations

Allocation Description

CN1 provides a total of 8 pin numbers available for allocation of input signals, corresponding to the sub-parameters of Pn509 and Pn510. Moreover, there're 8 virtual input bits controlled by Modbus communication, corresponding to the sub-parameters of Pn709 and Pn710.

■ If you allocate two or more signals to the same input circuit, a logical OR of the inputs will be used and all of the allocated signals will operate accordingly. This may result in unexpected operation.

• Since the pins have priority, only the highest priority pin is in effect if a signal is repeatedly allocated to multiple pin. The priority of the pins is arranged from high to low as follows:

CN1-14<CN1-15<CN1-16<CN1-17<CN1-39<CN1-40<CN1-41<CN1-42

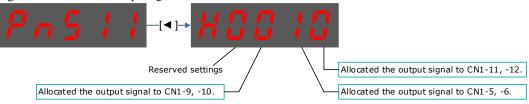
 bit10 bit11 bit12 bit14 bit15

Default Input Signals

Table 5-2 lists the input signals that can be allocated and their corresponding values. Set the sub-parameters of Pn509, Pn510, Pn709 and Pn710 to use the following values, which means that they are allocated to the corresponding pins.

Table 5-2 Default Input signals

dole 3 2 Delatit input signals				
Signal	Name	Value		
S-ON	Servo ON Input Signal	00		
P-CON	Proportional Control Reference	01		


Signal	Name	Value
P-OT	Forward Drive Prohibit Input Signal	02
N-OT	Reverse Drive Prohibit Input Signal	03
ALMRST	Alarm Clear	04
CLR	Clear Position Deviation Pulse	05
P-CL	Forward External Torque Limit Input Signal	06
N-CL	Reverse External Torque Limit Input Signal	07
G-SEL	Gain Selection Input Signal	08
JDPOS-JOG+	PCP Control, PJOG positive command	09
JDPOS-JOG-	PCP Control, PJOG negative command	0A
JDPOS-HALT	PCP Control, stop command	0B
HmRef	Homing Input Signal	0C
SHOM	Homing Start Signal	0D
ORG	Reference Switch Signal	0E
ZCLAMP	Zero Clamp Signal	0F
TORQ_JD1	Internal torque contact 1	10
TORQ_JD2	Internal torque contact 2	11
TORQ_SPEED_LIMIT1	Internal torque reference limit 1	12
TORQ_SPEED_LIMIT2	Internal torque reference limit 2	13
ANLOD_REV	Analog input command negation When the control mode is of D-parameter speed, the given speed is reversed	14
POS0	Select PCP connection point as 0	15
POS1	Select PCP connection point as 1	16
POS2	Select PCP connection point as 2	17
POS3	Select PCP connection point as 3	18
POS4	Select PCP connection point as 4	19
ANAG_SEL	Switch the speed command input gain from Pn300 to Pn302 in analog speed control mode. Switch the torque command input gain from Pn400 to Pn414 in analog torque control mode.	1A
MDP1	Reserved	1A
MD0	Reserved	1B
MD1	Reserved	1C

5.7.2 Output Signal Allocations

Allocation Description

The I/O signal connector (CN1) on the Drive provides three group of pins (points) for allocating the output signals, corresponding to the parameter Pn511, as is shown in Figure 5-3.

Figure 5-3 Allocation of output signals

If you allocate more than one signal to the same output circuit, a logical OR of the signals will be output.

Default Output Signals

Table 5-3 lists the output signals that can be allocated and their corresponding values. Set the parameter Pn511 to use the following values, which means that they are allocated to the corresponding pins.

Table 5-3 Default Output signals

Signal	Name	Value
COIN/VCMP	Positioning Completion Output Signal or Speed Coincidence Detection Output Signal	0
TGON	Rotation Detection Output Signal	1
S-RDY	Servo Ready Output Signal	2
CLT	Torque Limit Detection Output Signal	3
BK	Brake Output Signal	4
PGC	Motor C-pulse Output Signal	5
OT	Overtravel Output Signal	6
RD	Motor Excitation Output Signal	7
НОМЕ	Homing Completion Output Signal	8
TCR	Torque Detection Output Signal	9
R-OUT1	Remoted IO Output Signal 0	A
R-OUT2	Remoted IO Output Signal 1	В
R-OUT3	Remoted IO Output Signal 2	С

5.8 Control Mode Selection

Speed control, position control and torque control are available to servo drive. Set through the control mode selection (Pn005.1).

Parameter	Set Value	Control Mode	Description
	0	Speed Control (Analog Reference)	Controls servomotor speed using analog voltage speed reference.
	1	Position Control (Reference)	Controls the position of the servomotor using pulse train position reference. Controls the position with the number of input pulses, and controls the speed with the input pulse frequency. Use when positioning is required.
	2	Torque Control	Controls the servomotor's output torque with analog voltage torque reference. Use to output the required amount of torque for operations such as pressing.
	3	Speed Control (contact reference) →Speed Control (zero reference)	Use 7 speed parameters (Pn316 to Pn322) and zero reference (halt) pre-set in the servo drive for speed control. When this control mode is selected, no analog reference is required.
	4	Speed Control (contact reference) →Speed Control (analog reference)	
Pn005.1	5	Speed Control (contact reference) ↔Position Control (pulse train reference)	
	6	Speed Control (contact reference) ↔Torque Control	These are switching modes for using the above- mentioned control methods described above in
	7	Position Control (pulse train reference) ↔ Speed Control (analog reference)	combination. Select the control method switching mode that best suits the application.
	8	Position Control (pulse train reference) ↔ Torque Control	
	9	Torque Control ↔ Speed Control (analog reference)	
	A	Speed Control (analog reference) →Zero Clamp Control	Use zero clamp function under speed control mode.

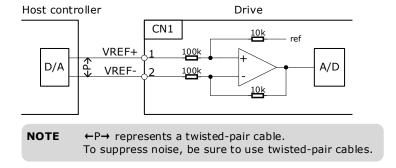
Parameter	Set Value	Control Mode	Description
Position Control (pulse train reference) → Position Control (pulse prohibited)		(pulse train reference) → Position Control (pulse	Use pulse prohibited function under position control mode.
	C PCP Control		Pre-set the position control and PJOG operation of 32 program contacts in the servo drive. When this control mode is selected, the signal input of an external linear drive is not required.
	D	Position Control (Parameter reference)	Use the speed control of a speed parameter (Pn304) pre-set in the servo drive. When this control mode is selected, no analog reference is required.

5.9 Speed Control

Speed control is selected by Pn005.1:

Parameter	Setting	Meaning	When Enabled
Pn005.1	0	Control mode selection: speed control (analog reference)	After restart

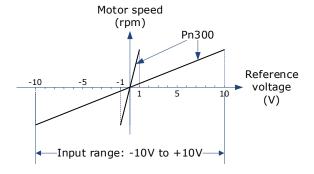
5.9.1 Setting speed control


Speed reference input signal

To control the speed of the servo motor at a speed proportional to the input voltage, it is necessary to set the speed reference input signal.

Туре	Signal Name	Connector Pin Number	Meaning
Input	VREF+	CN1-1	Speed Reference Input Signal
Input	VREF-	CN1-2	Speed Reference input Signal

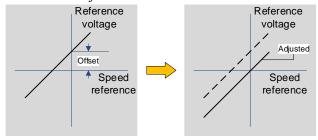
[Note] Maximum input voltage: DC \pm 10V.


When performing position control by a host controller such as a programmable controller, connect it to the speed reference output terminal of the host controller.

Setting speed reference input gain

Sets the analog voltage level for the speed reference (V-REF) necessary to operate the servomotor at the rated speed through Pn300.

Number	Name	Range	Unit	Default	When Enabled
Pn300	Analog Speed Reference Input Gain	0 to 3000	rpm/V	150	Immediately


Speed Reference Input Example

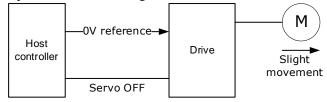
Pn300=150 [factory setting]:

Speed Reference Input	Direction	Motor Speed
+1V	Forward	150rpm
+5V	Forward	750rpm
-10V	Reverse	-1500rpm

5.9.2 Adjustment of Speed Reference Offset:

When speed control is used, even if the command is 0V (the command speed is 0 or haled), the servo motor may rotate at a slight speed. This is because there is a slight deviation in the reference inside the servo unit. This slight deviation is called "offset". When the servo motor is moving at a slight speed, it is necessary to use the offset adjustment function to eliminate the offset.

Auto Adjustment of Speed Reference Offset:

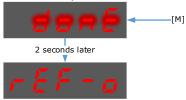

The auto adjustment of the Speed Reference Offset is a method for the servo drive to automatically adjust the voltage of the speed command after offset measurement.

- The measured offset will be saved in the servo drive.
- The offset is not a parameter, so the offset will not be reset even if the parameter factory value (Fn001) is restored.

Following provides the steps for auto adjustment of the Speed Reference Offset.

- Step 1 Confirm that the servo drive is in the servo OFF state.
- Step 2 Input 0V command voltage from the host controller or external circuit.

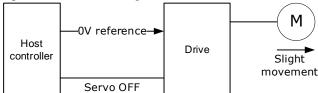
Step 3 Press [M] key several times to select the Utility Function Mode.


Step 4 Press [▲] key or [▼] key to select the function number Fn003.

Step 5 Press [◀] key and the operating panel is displayed as follows.

Step 6 Press [M] key to execute automatic offset adjustment.

Step 7 Press the [◀] key to return to the display of the Fn003.


----End

Manual Adjustment of Speed Reference Offset

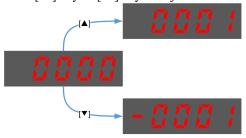
The manual adjustment of the speed reference offset is a method that inputs the speed command offset directly for adjustment. Use the manual adjustment in the following situations.

- If a loop is formed with the host controller and the position error pulse is set to be zero when servolock is stopped.
- To deliberately set the offset to some value.
- To check the offset data set in the speed reference offset auto adjustment mode.
- Following provides the steps for manual adjustment of the Speed Reference Offset.

Step 1 Input 0V command voltage from the host controller or external circuit.

Step 2 Press [M] key on operating panel for several times to select the Utility Function Mode.

Step 3 Press [▲] key or [▼] key to select the function number Fn004.


Step 4 Press [◀] key and the operating panel is displayed as follows.

- Step 5 Turn ON the servo S-ON signal, so that the servo drive enters the servo ON state.
- Step 6 Press the [M] key for one second to display the current speed reference offset.

Step 7 Press [▲] key or [▼] key to adjust the offset manually.

[Note] The adjustment range of the offset is -1024 to 1024.

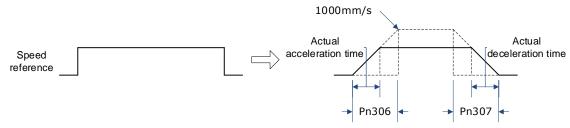
Step 8 Press and hold the [◀] key for 1 second to return to the manual adjustment display.

Step 9 Press the [M] key to return to the display of the Fn004.

----End

5.9.3 Soft Start

The soft start function converts the stepwise speed reference inside the drive to a consistent rate of acceleration and deceleration.

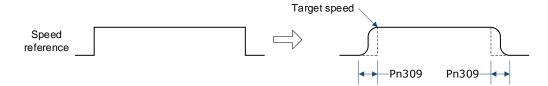

First, the user needs to select the running curve of the speed reference via Pn310 (speed reference curve form).

Parameter	Name	Setting	Description	When Enabled	
	0	Ramp [factory setting]			
D210	Speed reference	1	S curve	_	
Pn310	curve form	2	Primary filtering	restart	
		3	Secondary filtering		

Use this function when you want to achieve smooth speed control (including internally set speed control).

When speed reference uses ramp form (Pn310=0)

The figure below shows the timing diagram of the speed reference in the ramp form (Pn310=0). Among them, Pn306 is the time interval for the motor to accelerate from the stop state to speed of 1000rpm, and Pn307 is the time interval for the motor from 1000rpm to the stop state.


Where:

Actual acceleration time =
$$\frac{\text{Target speed}}{1000} \times Pn306$$

Actual deceleration time = $\frac{\text{Target speed}}{1000} \times Pn307$

Parameter	Name	Range	Unit	Default	When Enabled
Pn306	Soft Start Acceleration Time	0 to 10000	ms	0	Immediately
Pn307	Soft Start Deceleration Time	0 to 10000	ms	0	Immediately

When speed reference uses S-curve (Pn310=1)

The figure below shows the timing diagram of the speed reference in the S-curve (Pn310=1). Among them, Pn309 is the time interval for the motor to accelerate from the stop state to the target speed, or the time interval for the motor to decelerate from the target speed to the stop state.

Moreover, transition form of the S-curve via Pn311 can also be selected. User can try and choose the appropriate setting.

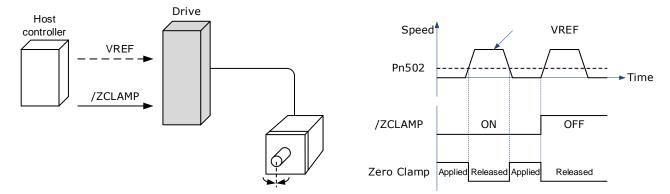
Parameter	Name	Range	Unit	Default	When Enabled
Pn309	S-curve rising time	0 to 10000	ms	0	Immediately
Pn311	S shape selection	0 to 3	_	0	After restart

When speed reference uses filtering (Pn310=2 or 3)

Pn308 (speed filter time constant) smooths the speed reference by applying a 1st-order delay filter can be applied to the analog speed reference (VREF) input.

This parameter is generally not set. If the set value is too large, the responsiveness may be reduced. It is recommended to set while confirming the responsiveness.

Parameter	Name	Range	Unit	Default	When Enabled
Pn308	Speed Reference Filter Time Constant	0 to 10000	ms	0	Immediately


5.9.4 Zero Clamp Function

When the zero clamp function is used for speed control, the upper controller is a system that forms a loop.

The zero clamp function locks the servo when the input voltage of the speed reference (VREF) drops below the set speed in the zero clamp level parameter (Pn502) while the zero clamp signal (/ZCLAMP) is ON (low level). By this moment, a loop is formed inside the servo drive, ignoring the speed reference.

Parameter	Name	Range	Unit	Default	When Enabled
Pn502	Zero Clamp Speed	0 to 3000	rpm	10	Immediately

The servo motor is fixed within ± 1 pulse of the zero clamp effective position. Even if it moves due to external force, it returns to the zero-clamp position.

Adjust the position loop gain in Pn104 (position loop gain) if the servomotor oscillates in the zero clamp state. If the gain switching function is used, adjusting Pn109 (2nd position loop gain) is also required.

Zero-Clamp Signal Allocations

The /ZCLAMP signal is not allocated in the factory setting, and the user needs to set it through Pn509 or Pn510.

Туре	Signal	Connector Pin Number	Signal State	Meaning
	/P-CON	CN1-15	ON (Low level)	Zero clamp function is active
	/P-CON	CN1-13	OFF (High level)	Zero clamp function is inactive
Input	/ZCLAMP	Allocated via Pn509 or Pn510	ON Low level)	When the input voltage of the speed reference input (VREF) falls below the speed set by Pn502 (zero-clamp speed), the zero clamp function will be validated.
			OFF (High level)	Zero clamp function is inactive

Setting Zero Clamp Function

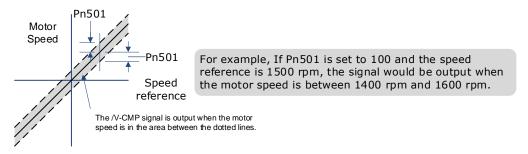
When the control mode (Pn005.1) is set to A, the zero clamp function is active when the following two conditions are satisfied

- Low level when /P-CON is ON
- The speed reference (VREF) drops below the set value of Pn502

Parameter	Setting	Meaning	When Enabled
Pn005.1	A	Control mode selection: Speed control (analog reference) \leftrightarrow Zero clamp control	After restart

5.9.5 Speed Coincidence Detection (/VCMP) Signal

The Speed Coincidence Detection (/VCMP) Signal is the signal output when the speed of the servomotor coincides with the reference speed. It is used in occasions such as interlocking with the upper controller. This output signal can only be used during speed control.

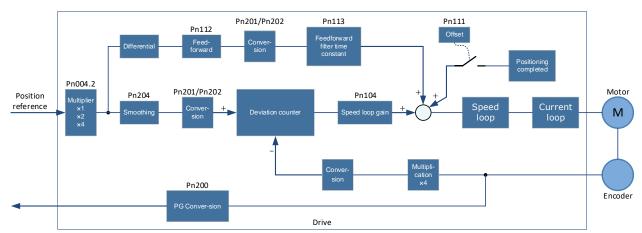

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Output ACMP		CN1-11, 12	ON (low level)	Speed coincides.
Output	Output /VCMP CN1-1		OFF (high level)	Speed does not coincide.

[Note] In position control, CN1-11, 12 output /COIN (positioning completion) signal.

This output signal can be distributed to other output terminals via Pn511. For details, please refer to "5.7.2 Output Signal Allocation".

No.	Name	Range	Unit	Default	When Enabled
Pn501	Speed Coincidence Error	0 to 100	rpm	10	Immediately

The VCMP signal is output when the difference between the motor speed and the reference speed drops below the set speed of Pn501.

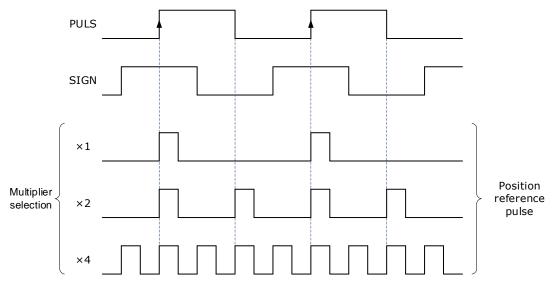


5.10 Position Control

Use Pn005.1 to select Position Control:

Parameter	Setting	Meaning	When Enabled
Pn005.1	1	Control mode selection: position control (pulse train reference)	After restart

The control block diagram for position control is shown in figure below.


5.10.1 Basic Settings of Position Control

Setting position reference input form

Use Pn004.2 to set the input form of the position reference.

Parameter Setting	Multiplier	Input form	Forward Reference	Reverse Reference
Pn004.2 = 0	-	SIGN + PULS [Positive Logic]	PULS H level	PULS
Pn004.2 = 1	-	CW + CCW [Positive Logic]	CW L level	CW L level
Pn004.2 = 2	1	90°phase	90°	90°
Pn004.2 = 3	2	difference two-phase	Phase A	Phase A
Pn004.2 = 4	4	pulse	Phase B	Phase B

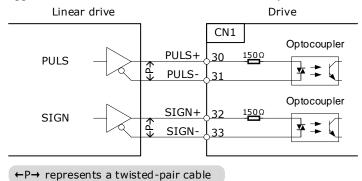
The input multiplier can be set when the 90° phase difference is of two-phase pulse reference form.

Also, the user can choose whether to invert the PULS signal and SIGN signal using Pn004.3.

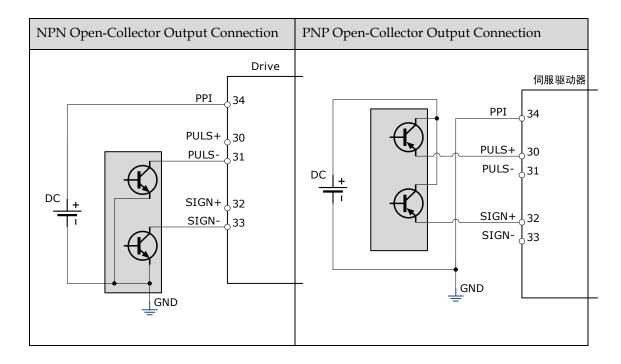
Parameter	Setting	Meaning	When Enabled
	0	Both PULS reference and SIGN reference are not inverted	
Pn004.3	1 1	PULS reference is not inverted, but SIGN reference is inverted	After
P11004.3	2 PULS reference is inverted, but SIGN reference is not inverted		restart
	3	Both PULS reference and SIGN reference are inverted	

Electrical specifications for position reference input

Reference Pulse Signal Form	Electrical Specification	Remark	
SIGN + PULS Max reference frequency: 500kpps (For open-collector output: 200kpps)	PULS 13 12 12 17 17 17 17 17 17	t1, t2, t3, t7 \leq 0.1 µs t4, t5, t6 \geq 3.0 µs $\tau \geq$ 1.0 µs $\tau \div$ T \leq 0.5	The sign (SIGN) is a forward rotation reference at H level, and a reverse rotation reference at L level.
CW + CCW Max reference frequency: 500kpps (For open-collector output: 200kpps)	CCW ti > ti	$t1, t2 \le 0.1 \mu s$ $t3 \ge 3 \mu s$ $\tau \ge 1.0 \mu s$ $\tau \div T \le 0.5$	_
90 °phase difference two- phase pulse (Phase A + Phase B) Max reference frequency (before frequency multiplier): ×1 input pulse multiplier: 500kpps ×2 input pulse multiplier: 400kpps ×4 input pulse multiplier: 200kpps	All Ball Forward reference Phase B leads phase A by 90° Reverse reference Phase B lags phase A by 90°	t1, t2 ≤ 0.1μs τ ≥ 1.0μs τ ÷ T = 0.5	Select the frequency multiplier via Pn004.2.


Connection Example

The pulse train output form of the reference controller includes the followings.


- Linear drive
- +24V open-collector output
- +12V/+5V open-collector output

[Connection Example for Linear drive Output]

Applicable linear driver: SN75174 manufactured by TI or MC3487 or the equivalent.

[Connection Example for Open-Collector Output]

5.10.2 Function and Setting of Position Error Clear (/CLR) Signal

Allocation of Position Error Clear Signal

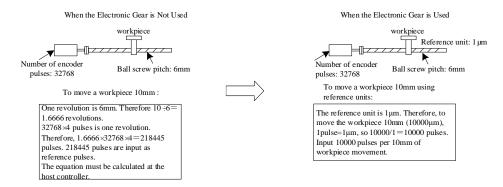
Туре	Signal Name	Connector Pin Number	Meaning
Input	/CLR	CN1-40	Error counter clear

When the /CLR signal is set to low level, clear error counter:

- The error counter inside the servo drive is set to "0"
- Position loop operation is disabled.

Setting the Clear Signal Mode

In position control mode, pulses will be still presented in the servo drive when servo OFF, thus it should be cleared when servo drive is turned ON (S-ON). Setting Pn004 to choose whether clearing the pulses automatically when servo OFF.


Parameter	Setting	Meaning	When Enabled
	0	Clear the error pulse when S-OFF, and not clear when over-travel.	After restart
Pn004.1	1	Do not clear the error pulse.	
	2	Clear the error pulse when servo is OFF or over-travel (except for zero clamp)	

5.10.3 Electronic Gear

Function Overview

The electronic gear enables the workpiece travel distance per input reference pulse from the reference controller to be set to any value.

One reference pulse from the reference controller, i.e., the minimum position data unit, is called "1 reference unit".

If the mechanical reduction ratio between the motor shaft and the load side is set to m/n, the setting value of the electronic gear ratio can be calculated according to following formula. (When the servomotor rotates m revolutions, the load shaft rotates n revolutions)

Electronic Gear
$$\frac{B}{A} = \frac{Pn201}{Pn202} = \frac{\text{Encoder pulse number} \times 4}{\text{Travel distance per load shaft revolution}} \times \frac{m}{n}$$

- Range of electronic gear ratio: 0.01≤electronic gear ratio (B/A)≤100
 If the electronic gear ratio is outside this range, the servo drive will not operate properly. In this case, modify the load configuration or reference unit.
- Divide the numerator and denominator into integers within the setting range when it exceeds the setting rang.

2nd Electronic Gear Switching

Switch between electronic gear ratio numerator 1 (Pn201) and electronic gear ratio numerator 2 (Pn203) according to the external/P-CON signal. The switching sequence is determined by the setting of Pn002.0. This function is enabled by user parameter Pn001.3.

Related Parameters

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Innut	/D CON	-CON CN1-15	ON (low level)	Switch to the 2 nd electronic gear
Input	/r-con		OFF (high level)	Switch to the 1st electronic gear

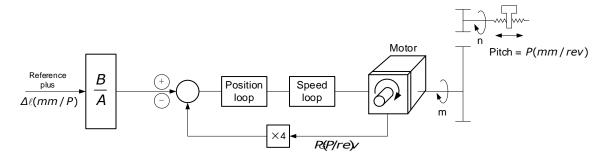
Number	Name	Range	Unit	Default	When Enabled
Pn201	16-bit 1 st electronic gear numerator	1 to 100000	-	1	After restart
Pn202	16-bit electronic gear denominator	1 to 100000	_	1	After restart
Pn203	16-bit 2 nd electronic gear numerator	1 to 100000	-	1	After restart

Setting Steps

Set the electronic gear ratio as per the steps and instructions described in the table below.

Step	Operation	Description
1	Check machine specifications.	Check the deceleration ratio, ball screw pitch and pulley diameter.
2	Check the number of encoder pulses.	Check the number of encoder pulses for the Servo motor used.
3	Determine the reference unit used.	Determine the reference unit from the host controller, considering the machine specifications and positioning accuracy.
4	Calculate the travel distance per load shaft revolution.	Calculate the number of reference units necessary to turn the load shaft one revolution based on the previously determined reference units.
5	Calculate the electronic gear ratio.	Use the electronic gear ratio equation to calculate the ratio (B/A).
6	Set parameters.	Set parameters using the calculated values.

Setting Examples


		Machine Structure		
Step	Operation	Ball Screw Reference unit: 0.001mm Load shaft 17-bit encoder Ball screw pitch: 6mm	Disc Table Reference unit: 0.1° Deceleration ratio: 3: 1 Load shaft 17-bit encoder	Belt and Pulley Reference unit: 0.01mm Load shaft Deceleration ratio: Pulley diameter: 2: 1 17-bit encoder
1	Check machine specifications	Ball screw pitch:6mmDeceleration ratio: 1/1	 Rotation angle per revolution: 360° Deceleration ratio: 3/1 	• Pulley diameter: 100 mm (pulley circumference: 314mm) • Deceleration ratio: 2/1
2	Encoder	17-bit: 32768P/R	17-bit: 32768P/R	17-bit: 32768P/R
3	Determine the reference unit used	1 reference unit: 0.001mm (1 µm)	1 reference unit: 0.1°	1 reference unit: 0.01mm
4	Calculate the travel distance per load shaft revolution	6mm/0.001mm=6000	360° /0.1° =3600	314mm/0.01mm=31400
5	Calculate the electronic gear ratio	$\frac{B}{A} = \frac{32768 \times 4}{6000} \times \frac{1}{1}$	$\frac{B}{A} = \frac{32768 \times 4}{3600} \times \frac{3}{1}$	$\frac{B}{A} = \frac{32768 \times 4}{31400} \times \frac{2}{1}$
6	Set parameters	Pn201 = 131072 Pn202 = 6000	Pn201 = 393216 Pn202 = 3600	Pn201 = 262144 Pn202 = 31400
7	Final result	Pn201 = 32768 Pn202 = 1500	Pn201 = 32768 Pn202 = 300	Pn201 = 32768 Pn202 = 3925

Reduce the fraction (both numerator and denominator) if the calculated result will not be within the setting range.

For example, reduce the above numerators and denominators by four or other numbers to obtain the final results in step 7 and complete the settings.

Electronic Gear Ratio Equation

Where: Δl is the reference unit; P_G is the encoder pulse; P is the pitch of the ball screw; m/n is the reduction ratio.

$$\frac{n \times P}{\Delta \ell} \times \frac{B}{A} = 4 \times P_G \times m \implies \frac{B}{A} = \frac{4 \times P_G \times m \times \Delta \ell}{n \times P} = \frac{4 \times P_G}{\frac{P}{\Delta \ell}} \times \frac{m}{n}$$

Set A and B with the following parameters Pn202 and Pn201.

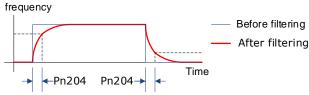
5.10.4 Smoothing

The smoothing filters the reference pulse input to make the travel of the servomotor smoother. This function is more effective in the following cases.

- When the host controller that outputs a reference that cannot perform acceleration/deceleration processing.
- When the reference pulse frequency is too low.
- When the conversion of position reference is large $(\frac{Pn201}{Pn202} \ge 10)$

[Note] This setting has no effect on the travel distance (reference pulse number).

Set the position reference filtering method using Pn205 (position reference filter form selection).


Number	Name	Setting	Meaning	When Enabled
Position		0 [Factory Setting]	Primary filtering to position reference	
Pn205	Reference Filter Form Selection	1	Secondary filtering to position reference	After restart

Then set the filter time of the position reference using Pn204 (position reference filter time constant).

Number	Name	Range	Unit	Default	When Enabled
Pn204	Position Reference Filter Time Constant	0 to 32767	0.1ms	0	Immediately

The figure below shows the 1st order filtering for position reference:

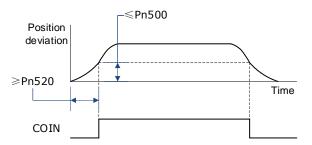
Reference pulse

IMPORTANT

After changing this parameter, the changed parameter will be effective after user will re-input the position reference next time and input the position error clear (CLR) signal.

5.10.5 Positioning Completion (/COIN) Signal

This signal indicates that servomotor movement has been completed during position control. Use the signal to confirm that positioning has been completed at the host controller.

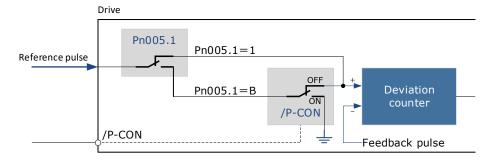

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Output	/COIN	CN1 11 12	ON (low level)	Positioning has been completed.
Output	/COIN	CN1-11, 12	OFF (high level)	Positioning is not completed.

[Note] CN1-11, 12 output the VCMP (speed coincidence) signals during speed control.

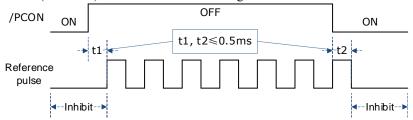
This output signal can be allocated to an output terminal with parameter Pn511. Refer to "0 Output Signal Allocation".

The positioning completion (COIN) signal is output when the difference (position error pulse) between the number of reference pulses output by the host controller and the travel distance of the servomotor is less than the value set in tPn500, and the stabilization time is more than the value of Pn520 (position completion time).

Number	Name	Range	Unit	Default	When Enabled
Pn500	Positioning Error	0 to 5000	μm	10	Immediately
Pn520	Position Completion Time	0 to 60000	0.1ms	500	Immediately



5.10.6 Reference Pulse Inhibit Function (INHIBIT)


This function stops (inhibits) the servodrive from counting input pulses during position control. When this function is active, the servodrive enters a state where it cannot receive reference pulse input.

When this function is used, it is necessary to set Pn005.1=B.

Parameter	Setting	Meaning	When Enabled
Pn005.1	В	Control mode selection: position control (pulse train reference) ↔ Position control (pulse inhibit)	After restart

Inhibit (INHIBIT) is switched via/P-CON signal:

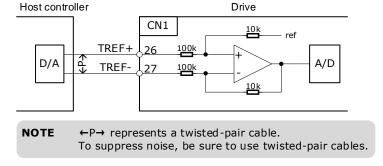
Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Innut	/D CON	CON CNI 15	ON (low level)	Stop reference pulses counting
Input /P-CON		CN1-15	OFF (high level)	Start reference pulse count

5.11 Torque Control

This mode inputs a torque reference in the form of an analog voltage reference to the servodrive, and controls the operation of the servomotor using a torque proportional to the input voltage. This control mode needs to be selected via Pn005.1 and Pn409.

Parameter	Setting	Meaning	When Enabled
Pn005.1	2	Control mode selection: torque control	After restart
Pn409	0	Use of external analog quantity voltage reference requires the external signal connection	Immediately

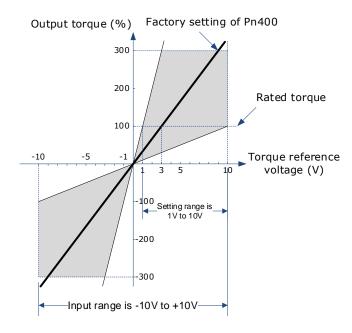
5.11.1 Basic Settings of Torque Control


Specification of Torque Reference Signal Input

To apply torque control to the servomotor with a torque proportional to the input voltage, it is necessary to set the torque reference input signal.

Туре	Signal Name	Connector Pin Number	Meaning
Immust	TREF+	CN1-26	Torque Reference Input
Input	TREF-	CN1-27	Signal

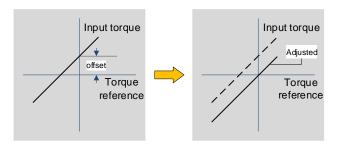
[Note] Max input voltage: DC \pm 10V.


When performing position control by a host controller such as a programmable controller, connect it to the analog reference output terminal of the host controller.

Setting Torque Reference Input Gain

Pn400 is used to set the analog voltage value of the torque reference (TREF) that operates the servomotor at the rated speed.

Number	Name	Range	Unit	Default	When Enabled
Pn400	Torque Reference Gain	10 to 100	0.1V / 100%	33	Immediately


Torque Reference Input Example

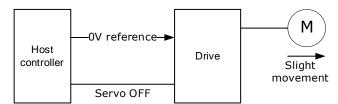
When Pn400 = 30:

Torque Reference Input	Travel Direction	Torque
+3V	Forward	Rated torque
+1V	Forward	1/3 rated torque
-1.5V	Reverse	1/2 rated torque

5.11.2 Adjustment of Torque Reference Offset

When using torque control, the servomotor may rotate slowly even when 0V (reference speed is 0 or stop) is specified as the analog reference voltage. This occurs when there's slight offset for internal reference of servo drive. Such slight offset is called "Offset". When the servo motor is moving at a low speed, it is necessary to use the offset adjustment function to eliminate the offset.

Auto Adjustment of the Torque Reference Offset

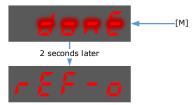

The auto adjustment of torque reference offset automatically measures the offset and adjusts the torque reference voltage automatically.

- The measured offset will be saved in the servo drive.
- The offset is not a parameter, so it will not be reset even if the parameter factory value (Fn001) is restored.

The following provides the operating steps for auto adjustment of the torque reference offset.

- Step 1 Make sure that the servo drive is in the servo OFF state.
- Step 2 Input the 0V reference voltage from the host controller or external circuit.

Step 3 Press the [M] key to select the utility function mode.

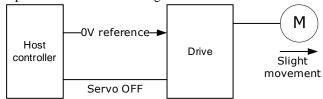

Step 4 Press the $[\blacktriangle]$ or $[\blacktriangledown]$ key to select the utility function number Fn003.

Step 5 Press [◀] key and the operating panel is displayed as follows.

Step 6 Press the [M] key, and the reference offset will be automatically adjusted.

Step 7 Press the [◀] key to return to the utility function mode display Fn003.

----End


Manual Adjustment of the Torque Reference Offset

The manual adjustment of torque reference offset directly inputs the torque reference offset for adjustment. Manual adjustment is used in the following cases.

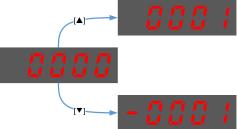
- If a position loop is formed with the host controller and the error is zeroed when servolock is stopped.
- To deliberately set the offset to some value.
- Use this mode to check the offset data that was set in the auto adjustment mode of the torque reference offset.

The following provides the operating steps for manual adjustment of the torque reference offset.

Step 1 Input the 0V reference voltage from the host controller or external circuit.

Step 2 Press the [M] key on the operating panel to select the utility function mode.

Step 3 Press the $[\blacktriangle]$ or $[\blacktriangledown]$ key to select the utility function number Fn004.


Step 4 Press [◀] key and the operating panel is displayed as follows.

- Step 5 Turn on the S-ON signal to make the servo drive enter the servo ON state.
- Step 6 Press and hold the [M] key for 1 sec or longer, the operation panel will display the current torque reference offset.

Step 7 Press the $[\blacktriangle]$ or $[\blacktriangledown]$ key to adjust the offset manually.

[Note] The adjustment range of the offset is -1024 to 1024.

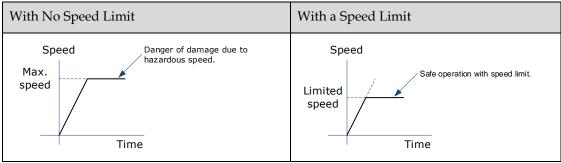
Step 8 Press and hold the [◀] for 1 sec, and return to the display of manual adjustment.

Step 9 Press the [◀] key to return to the function number display Fn004.

----End

5.11.3 Setting Torque Reference Input Filter

It is possible to apply a 1st-order delay filter to the analog torque reference (VREF) input via Pn105 (torque reference filter time constant), to smooth the torque reference.


This parameter is generally not set. If the set value is too large, the responsiveness may be reduced. It is recommended to set while confirming the responsiveness.

Number	Name	Range	Unit	Default	When Enabled
Pn105	Torque Reference Filter Time Constant	0 to 2500	0.01ms	50	Immediately

5.11.4 Speed Limit During Torque Control

The speed limit during torque control is a function used to limit the speed of the servomotor in order to protect the machine.

For torque control, the servomotor is controlled to output the specified torque, but the motor speed is not controlled. Therefore, if a reference torque is input that is larger than the machine torque, the speed of the servomotor may increase greatly. If that may occur, use this function to limit the speed.

[Note] The actual limit of motor speed depends on the load conditions on the motor.

Selection of Speed Limit Detection

Select the speed limit way using Pn001.

Parameter	Setting	Meaning	When Enabled
	0	Use the set value of Pn408 as the speed limit value.	
Pn001.1	1	The smaller of the speed value corresponding to the Vref input analog voltage, and the Pn408 setting value is used as the speed limit value.	After restart

Internal Speed Limit Function

When Pn001.1=0, the internal speed limit function is selected.

In this case, user needs to set Pn408 as the limit value of the maximum motor speed. If the set value of Pn408 exceeds the maximum motor speed, the speed limit value is the maximum speed of the motor.

Number	Name	Range	Unit	Default	When Enabled
Pn408	Speed Limit During Torque Control	0 to 6000	rpm	1500	Immediately

External Speed Limit Function

When Pn001.1=1, the external speed limit function is selected. User can limit the speed via the VREF input signal and the set value of Pn408.

Туре	Signal Name	Connector Pin Number	Meaning
Innut	VREF+	CN1-1	Smood antonon on imput signal
Input	VREF-	CN1-2	Speed reference input signal

[Note] The max. input voltage: DC \pm 10V.

Number	Name	Range	Unit	Default	When Enabled
Pn408	Speed Limit During Torque Control	0 to 6000	rpm	1500	Immediately

In torque control, the motor speed limit value is controlled by analog reference:

- When Pn001.1=1, the smaller of the speed limit input from VREF and the set value of Pn408 is valid.
- The voltage value input as the limit value depends on the set value of Pn400, not the polarity.

5.11.5 Internal Torque Contact Control

The internal torque contact control is a method to control the operation of the servo motor by the torque reference generated inside the servo drive. This control mode is selected using Pn005.1 and Pn409.

Parameter	Setting	Meaning	When Enabled
Pn005.1	2	Control mode selection: torque control	After restart
Pn409	1	Use of internal torque contact reference does not require external signal connection	Immediately

Setting Internal Torque Reference

To select a torque contact reference value, user needs to allocate TORQ_JD1 and TORQ_JD2.

Туре	Signal Name	Connector Pin Number	Meaning
Innut	TORQ_JD1	Allered '- P. 500 - P. 510	Internal torque contact 1
Input	TORQ_JD2	Allocation via Pn509 or Pn510	Internal torque contact 2

The different states of TORQ_JD1 and TORQ_JD2 can be switched to select the corresponding torque contact parameters.

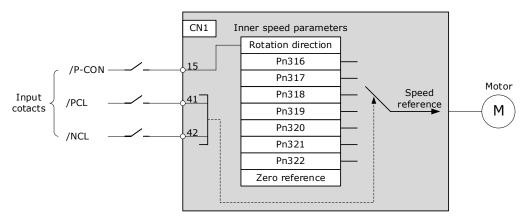
TORQ_JD1	TORQ_JD2	Torque Reference Parameter
0	0	Pn410 (torque contact 1)
1	0	Pn411 (torque contact 2)
0	1	Pn412 (torque contact 3)
1	1	Pn413 (torque contact 4)

Number	Name	Range	Unit	Default	When Enabled
Pn410	Torque Contact 1	-400 to 400	%	0	Immediately
Pn411	Torque Contact 2	-400 to 400	%	0	Immediately
Pn412	Torque Contact 3	-400 to 400	%	0	Immediately
Pn413	Torque Contact 4	-400 to 400	%	0	Immediately

Setting Internal Torque Reference Limit

User needs to allocate TORQ_SPEED_LIMIT1 and TORQ_SPEED_LIMIT2 when using the torque reference limit, so as to select the required speed limit.

Type	Signal Name	Connector Pin Number	Meaning
Innut	TORQ_SPEED_LIMIT1	Allocation via Pn509 or	Internal torque reference limit 1
Input	TORQ_SPEED_LIMIT2	Pn510	Internal torque reference limit 2


The different states of TORQ_SPEED_LIMIT1 and TORQ_SPEED_LIMIT2 can be switched so as to select the corresponding torque contact parameters.

TORQ_SPEED_LIMIT1	TORQ_SPEED_LIMIT2	Torque Reference Parameter	
0	0	Pn316 (speed limit 1)	
1	0	Pn317 (speed limit 2)	
0	1	Pn318 (speed limit 3)	
1	1	Pn319 (speed limit 4)	

Number	Name	Range	Unit	Default	When Enabled
Pn316	Speed Limit 1	-6000 to 6000	rpm	100	Immediately
Pn317	Speed Limit 2	-6000 to 6000	rpm	200	Immediately
Pn318	Speed Limit 3	-6000 to 6000	rpm	300	Immediately
Pn319	Speed Limit 4	-6000 to 6000	rpm	-100	Immediately

5.12 Internally Set Speed Control

It is a function that allows to set up to 7 motor speeds in the internal parameters of the servo drive, and selects the speed and moving direction from them through external input signals for speed control and operation. Since it is controlled by the internal parameters of the servo drive, a speed generator and pulse generator are not required to be installed externally.

5.12.1 Basic Settings of Internally Set Speed Control

Setting Input Signal

The input signals for switching the operating speed are listed in table below.

Туре	Signal Name	Connector Pin Number	Meaning
	P-CON	CN1-15	Switch the moving direction of the servo motor.
Input	PCL	CN1-41	Select the internally set speed.
	NCL	CN1-42	Select the internally set speed.

Selection of Internally Set Speed Control

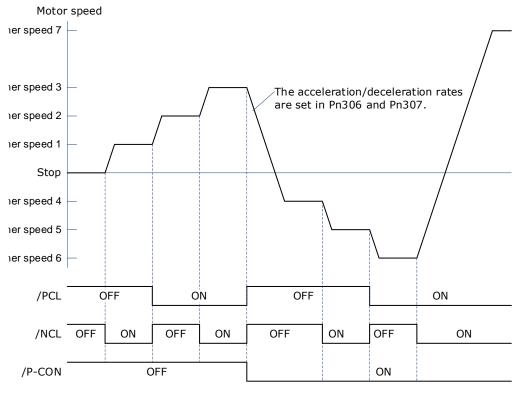
Use Pn005.1 to select the torque control:

Parameter	Setting	Meaning	When Enabled
Pn005.1	3	Control mode selection: speed control (contact reference) ↔ speed control (zero reference)	After restart

5.12.2 Speed Setting of Internally Set Speed

Number	Name	Range	Unit	Default	When Enabled
Pn316	Internally Set Speed 1	-6000 to 6000	rpm	100	Immediately
Pn317	Internally Set Speed 2	-6000 to 6000	rpm	200	Immediately
Pn318	Internally Set Speed 3	-6000 to 6000	rpm	300	Immediately
Pn319	Internally Set Speed 4	-6000 to 6000	rpm	-100	Immediately
Pn320	Internally Set Speed 5	-6000 to 6000	rpm	-200	Immediately
Pn321	Internally Set Speed 6	-6000 to 6000	rpm	-300	Immediately
Pn322	Internally Set Speed 7	-6000 to 6000	rpm	500	Immediately

5.12.3 Switching Internally Set Speed by Input Signal


Use ON/OFF combinations of the following input signals to select the internally set speeds.

Signal		Motor Travel	Operating Speed		
/P-CON	/PCL	/NCL	Direction	Operating Speed	
	OFF	OFF		Switch to speed control (zero reference).	
OFF	OFF	ON	Forward	Run at internally set speed 1 as set by Pn316.	
	ON	OFF		Run at internally set speed 2 as set by Pn317.	

Signal		Motor Travel	Onewating Speed		
/P-CON	/PCL	/NCL	Direction	Operating Speed	
	ON	ON		Run at internally set speed 3 as set by Pn318.	
	OFF	OFF	Danage	Run at internally set speed 4 as set by Pn319.	
ON	OFF	ON		Run at internally set speed 5 as set by Pn320.	
ON	ON	OFF	Reverse	Run at internally set speed 6 as set by Pn321.	
	ON	ON		Run at internally set speed 7 as set by Pn322.	

5.12.4 Running Example of Internally Set Speed Control

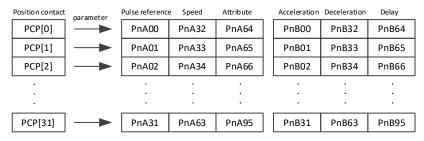
Figure below shows an example of operation during internally set speed control. This example is the operation method when internally set speed control and soft start are used in combination. Using the soft start function would reduce the impact of speed switching.

5.13 PCP Control

This function uses the 32 program contacts (PCP[0] to PCP[31]) preset in the drive for purpose of position control and PJOG operation.

When PCP control is selected, the drive will be controlled by the internal pulse generator to generate reference pulses based on the settings of the related parameters. In this case, the signal input from an external linear drive is not required.

5.13.1 PCP Control Selection


Select PCP control by setting Pn005.1=C.

Parameter	Setting	Meaning	When Enabled
Pn005.1	С	Control mode selection: position control (contact reference)	After restart

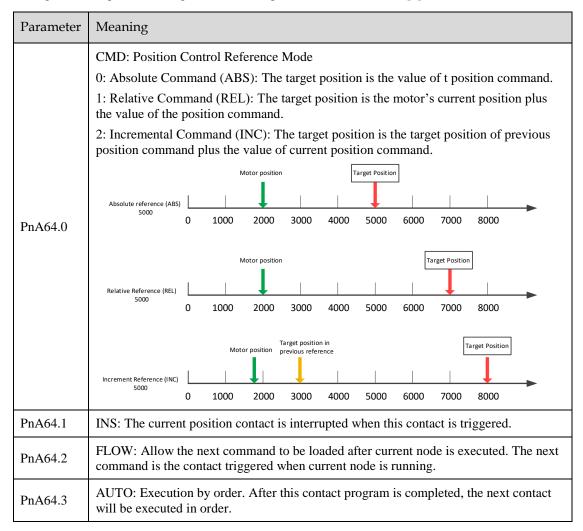
5.13.2 Paramter Setting of PCP Control

Parameter Setting of Contact

Servo drive allows to set a total of 32 point references (PCP[0] to PCP[31]). Each contact reference includes pulse reference, speed, attribute, acceleration/deceleration and delay.

The pulse reference defines the number of pulses of the contact, the speed defines the running speed of the contact, the attributes defines the motion attribute of contact, the acceleration and jerk define the acceleration/deceleration of the contact, and the delay defines the delay time after the contact reference is sent.

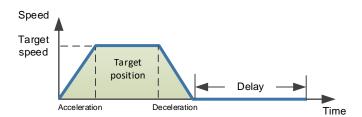
Use Pn014.1to set the IO trigger mode.


Parameter	Setting	Meaning	When Enabled
	0	Edge trigger mode: Contact is triggered at the falling edge of the /PCON signal, and the servo then reads the contact number	
Pn014.1	1	 Level trigger mode: Control PCP when the /PCON signal is in low level, and the servo reads the contact number. Operate PJOG when /PCON is in high level. 	After restart

Following shall be noted when setting Pn014.1=1.

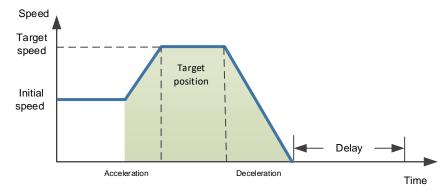
- Only absolute command (ABS) is supported. When setting the contact as a relative command (REL) or incremental command (INC), the contact will not be executed.
- Automatic loading of the next contact is not supported.
- When /PCON is pulled high during the contact operation, you need to wait for the end
 of the contact operation before starting PJOG operation.

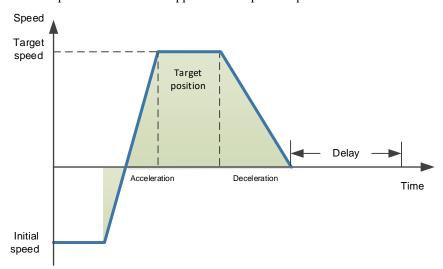
The attributes in each contact reference are set by the corresponding contact reference with the same meaning. For example, the setting of the attribute parameter PnA64 of PCP[0] is described as follows.


INS	FLOW	AUT	Interpretation	Diagram
✓	0	0	With the highest priority. When the attribute of the currently triggered contact is of interrupt, it updates the target position by interrupting the previous contact directly.	7 INS:1 V A T T T T T T T T T T T T
×	✓	0	Priority inferior to Interrupt. When the attribute of the currently triggered contact can be accessed, a new contact is allowed to access upon the execution of this contact and after the delay command is ended. If there is no new insertion, it is judged whether to load the next automatically.	7 INS:0 7 FLOW: 1 7
	×		With the lowest priority. When there's no contact that needs to be overlapped for current contact, and is not interrupted, the next contact is	4 5 FLOW:0 AUTO:1
×	✓, overlap is required if no contact	✓	executed by order. If a new interruptible contact is triggered when this contact is running, it will be interrupted. If a new non-interrupted contact is triggered while the contact is running, the new triggered contact is then discarded.	FLOW:1, no node wait AUTO:1

INS	FLOW	AUT	Interpretation	Diagram
×	× v, overlap is required if no contact	×	When current contact is running, no new contact other than Interrupt is accepted. It then judges whether the new contact is triggered until the current contact running is ended.	4 FLOW: 0 AUTO:0 Waiting for the trigger N FLOW: 1, no node wait AUTO:0 V AUTO:0 V AUTO:0 N

5.13.3 Contact Command Model


Position Command


The acceleration/deceleration are trapezoidal according to the given position and the acceleration/deceleration planning path, and can be set separately.

The position planning during Interrupt is to plan the position reference on the basis of the original reference speed.

• The initial speed is in the same direction with the planned position

• The initial speed is the direction opposite to the planned position

PJOG Command

It is valid under PCP contact control. PJOG can only be performed after the contact operation is ended.

At the same time, the contact cannot be triggered during PJOG operation.

PJOG curve is a trapezoidal, Pn305 is for the speed, Pn306 is for the acceleration, and Pn307 is for the deceleration.

Halt Command

This function allows to stop running through the external input signal STOP.

It is valid under PCP contact control. It can stop operation through the IO port during PJOG and PCP contact operation.

Input STOP signal (active at low level) to stop the current motion state, decelerate the speed to zero as per the deceleration set by Pn719. All control states are cleared after stopping, and cannot be restored to the original motion state. They shall be triggered again.

Number	Name	Range	Unit	Default	When Enabled
Pn324	Time required for trapezoidal deceleration at 1000rpm under indexing function	0 to 10000	ms	100	Immediately

5.13.4 Contact Trigger

The contact uses digital IO port trigger mode, by which users can trigger using the commands of POS0, POS1, POS2, POS3, POS4 and PCON.

The relationships are as defined as follows:

IO trigger mode (/PCON active low)	Contact attribute	Trigger signal
Edge	Absolute command (ABS)	/PCON↓
	Relative command (REL)	/PCON↓
	Relative command (REL)	/PCON↓
	PJOG	/PJOG+ or /PJOG- active when no contact is in operation
Level	Absolute command (ABS)	/PCON active
	Relative command (REL)	Not triggered
	Relative command (REL)	Not triggered
	PJOG	/PCON inactive, /PJOG+ or /PJOG-active

The corresponding IO relationships for each contact number are as listed below:

Position Command	POS4	POS3	POS2	POS1	POS0	Triggered Signal
PCP[0]	0	0	0	0	0	/PCON↓
PCP[1]	0	0	0	0	1	/PCON↓
PCP[2]						/PCON↓ or /PCON active
PCP[30]	1	1	1	1	0	/PCON↓ or /PCON active
PCP[31]	1	1	1	1	1	/PCON↓ or /PCON active

^{*} PCP[0] is available by setting parameter Pn014.2=1; Contact 0 is not executed

5.13.5 Software Limits

Compare the current motor running position of the Un009 with the position limit. It stops running if out of limits, and the servo enters the warning state, the servo is still under excitation status, the panel display shows A.XX in flashing status, and the upper computer can read the current warning number (same address as the alarm number) via Modbus. SoftOt output is available if the IO output signal is configured.

In case of a soft limit, there is no need to manually clear the warning but set the reverse motion command to exit the limit state.

Relevant alarm codes:

Alarm code	Name & sepcification
A.D7	Soft Limit, Forward
A.D8	Soft Limit, Reverse

Parameter	Name & sepcification	Unit	Setting range	Factory default	Re- power on
Pn015	Soft limit enable	-	0x0000~0x0001	0	Required
Pn325	Soft limit position 1	Р	-2,000,000,000~2,000,000,000	2,000,000,000	Not required
Pn326	Soft limit position 2	Р	-2,000,000,000~2,000,000,000	-2,000,000,000	Not required

When Pn015.0 = 0, the soft limit function is not enabled

When Pn015.0 = 0, the soft limit function is enabled and warning A.D7 occurs if the current position Un009 is greater than the range of $Pn325 \sim Pn326$. Warning A.D8 occurs if the current position Un009 is less than the range of $Pn325 \sim Pn326$.

When Pn325 < Pn326, the two values are exchanged and the limit range is Pn326~Pn325.

5.13.6 Partial In-place Output

The Contacts 1 to 7 in-place outputs can be individually monitored

The Pn511 outputs can be configured as follows:

[A]REMOTE0\PCP_COIN0

[B]REMOTE1\PCP_COIN1

[C]REMOTE2\PCP_COIN2

Contact No.	PCP_COIN0	PCP_COIN1	PCP_COIN2	In-place information
xx	0	0	0	Contacts 1 to 7 not in place
PCP[1]	0	0	1	Contact 1 in place
PCP[2]	0	1	0	Contact 2 in place
PCP[3]	0	1	1	Contact 3 in place
PCP[4]	1	0	0	Contact 4 in place
PCP[5]	1	0	1	Contact 5 in place
PCP[6]	1	1	0	Contact 6 in place
PCP[7]	1	1	1	Contact 7 in place

5.13.7 When Overtravel Occurs

During contact operation: When an overtravel occurs, the contact will enter the limit state and exit the contact operation. Un024 is displayed as the current given position.

- If stopping by P-OT, exit the POT by giving a reverse position. The reverse position must be smaller than the current given one.
- If stopping by N-OT, exit NOT by giving a positive position. The positive position must be greater than the current given one.

When PJOG is running:

- PJOG+ can reverse as PJOG- when it stops by encountering P-OT.
- PJOG- can reverse as PJOG- when it stops by encountering N-OT.

5.13.8 Display

Un024 (PCP target position)

- Under non-contact operation state, STOP, PJOG and Servo-off are displayed as the given motor position.
- Under contact operation state, it is displayed as the current target position of PCP.

5.14 Selection of Control Mode Combinations

The servo drive can combine the two control modes and switch between them. The control mode combinations can be selected by setting "4" to "B" in Pn005.1.

Parameter	Setting	Control Mode Combinations	When Enabled
	4	Speed control (contact reference) ↔ speed control (analog reference)	
Pn005.1	5	Speed control (contact reference) ↔ position control (pulse train reference)	After restart
	6	6 Speed control (contact reference) ↔ torque control	

Parameter	Setting	Control Mode Combinations	When Enabled
	7	Position control (pulse train reference) ↔ speed control (analog reference)	
	8	Position control (pulse train reference) ↔ torque control	
	9	Torque control ↔ Speed control (analog reference)	
	A	Speed control (analog reference) ↔ zero clamp control	
	В	Position control (pulse train reference) ↔ Position control (pulse prohibited)	

When Pn005.1=4, 5 and 6

Switch the control mode by using /P-CON, /PCL and /NCL signals.

Signal			Running Speed	Motor			
/P-CON	/PCL	/NCL	Pn005.1 = 4	Traveling Direction			
	OFF	OFF	Speed Control	Position Control	Torque Control		
OFF	OFF	ON	Run at internally	Forward			
	ON	OFF	Run at internally				
	ON	ON	Run at internally				
	OFF	OFF	Run at internally	set speed 4 as se	t by Pn319.		
ON	OFF	ON	Run at internally	Reverse			
ON	ON	OFF	Run at internally	Run at internally set speed 6 as set by Pn321.			
	ON	ON	Run at internally	set speed 7 as se	t by Pn322.		

Inner speed 3
Inner speed 2
Inner speed 1
Stop
/COIN

Reference pulse
/PCL
OFF
ON
OFF

[Example] The running example of Pn005.1 = 5 [Speed control (contact reference) \leftrightarrow Position control (pulse train reference)] is detailed as follows.

NOTE

Reference

/NCL

OFF

ON

Inner

speed 1

OFF

speed 2

----Inner speed control

 The value of t is not affected by the use of the soft boot feature. Reads of /PCL and/NCL can result in a maximum delay of 2ms.

ON

Inner

切换中

OFF

Position control-

ON

Inner

Inner

speed control

speed 1

The switch of the speed control (contact command) → position control (pulse column command) switches to position control after the motor deceleration has stopped during the deceleration time set by Pn307.

When Pn005.1=7, 8 and 9

Switch control mode using /P-CON.

Туре	Signal Name	Pin Number	Setting	Pn005.1=7	Pn005.1=8	Pn005.1=9
Input	/P-CON	CN1-15	ON	Speed control	Torque control	Speed control
			OFF	Position control	Position control	Torque control

When Pn005.1 = A and B

Switch control modes using /P-CON.

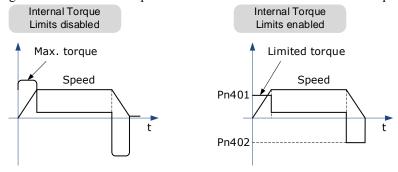
Туре	Signal Name	Pin Number	Setting	Pn005.1=A	Pn005.1=B
Input /P-CON	CN1-15	ON	Speed control with zero clamp function	Position control with reference pulse prohibition	
		OFF	speed control	Position control	

5.15 Torque Limit

The servo drive provides the following three methods for limiting output torque to protect the machine.

Limit Method	Outline
Internal Torque Limits	Torque limiting through the parameters.
External Torque Limits	The torque is limited with an input signal from the host station.
Torque limit of analog reference	Torque limiting by analog reference

If you set a value that exceeds the maximum torque of the Motor, the torque will be limited to the maximum torque of the Motor.


5.15.1 Internal Torque Limits

This function limits the maximum output torque through parameters Pn401 and Pn402.

Parameter	Name	Range	Unit	Default	When Enabled
Pn401	Forward Internal Torque Limit	0 to 350	%	300	Immediately
Pn402	Reverse Internal Torque Limit	0 to 350	%	300	Immediately

[Note] The setting unit is the percentage relative to the motor's rated torque.

Figure below shows a comparison of waveform curves with internal torque and without torque limit:

[Note] If the setting of Pn401 or Pn402 is too low, the torque may be insufficient for acceleration or deceleration of the Motor.

5.15.2 External Torque Limits

This function limits the torque through the input signal of the upper controller when the torque to be limited at specific times during machine operation. It can be used to push to stop the action or to hold operations for robot workpieces.

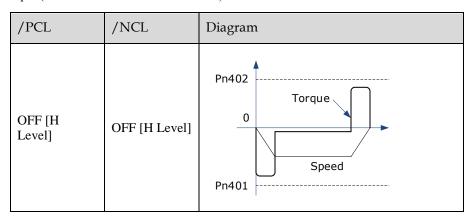
Input Signal

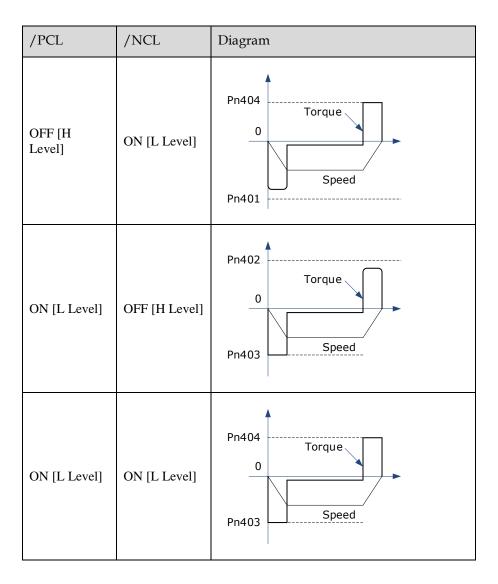
The input signals to enable the external torque limits are listed in table below.

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Immut	/D.CI			Turn ON the forward external torque limit. [Limit value: Pn403]
Input /P-CL	/P-CL	CN1-41	OFF	Turn OFF the forward external torque limit. [Limit value: Pn401]
Input /NCL	CN1 40	ON	Turn ON the reverse external torque limit. [Limit value: Pn404]	
	/NCL	ICL CN1-42	OFF	Turn OFF the reverse external torque limit. [Limit value: Pn402]

Related Parameters

The related parameters of external torque limit are as follows.

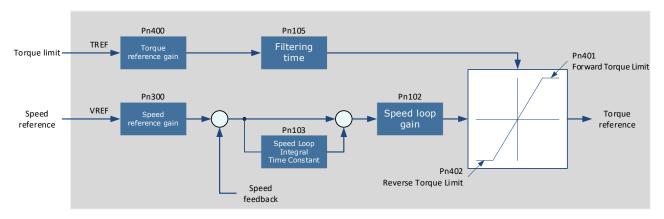

Parameter	Name	Range	Unit	Default	When Enabled
Pn401	Forward Internal Torque Limit	0 to 400	%	350	Immediately
Pn402	Reverse Internal Torque Limit	0 to 400	%	350	Immediately
Pn403	Forward External Torque Limit	0 to 400	%	100	Immediately
Pn404	Reverse External Torque Limit	0 to 400	%	100	Immediately


[Note] The setting unit is the percentage relative to the motor's rated torque.

If the setting values of Pn401, Pn402, Pn403 and Pn404 are too low, the torque may be insufficient for motor acceleration/deceleration.

Changes in the Output Torque for External Torque Limits

In the following figure, when setting Pn001.0=0 (under the forward reference, the incremental encoder is used in the positive counting direction), it indicates to set the internal torque limit as 300% of output torque (Pn401 and Pn402 are both 300%).


5.15.3 Torque Limiting Using an Analog Reference

This function uses TREF (CN1-26, -27) as analog reference input terminal so as to limit the torque arbitrarily.

This limit method can only be used in speed control or position control, but be invalid in torque control.

Parameter	Setting	Meaning	When Enabled
Pn001.2	1	Use the TREF terminal as the input terminal of external torque limit.	After restart

Figure below is the block diagram under speed control.

[Note] There is no issue with input voltage polarity of the analog voltage reference for torque limiting. The absolute values of both + and - voltages are input, and a torque limit value corresponding to that absolute value is applied in the forward or reverse direction.

Input Signal

The input signals when the torque limiting using an analog reference is made are as follows.

Туре	Signal Name	Connector Pin Number	Meaning
Innut	TREF+	CN1-26	Input signal of torque reference
Input	TREF-	CN1-27	Input signal of torque reference

Related Parameters

The parameters related to the torque limiting using an analog reference are as follows.

Number	Name	Range	Unit	Default	When Enabled
Pn401	Forward Internal Torque Limit	0 to 400	%	350	Immediately
Pn402	Reverse Internal Torque Limit	0 to 400	%	300	Immediately
Pn400	Analog Torque Reference Gain	10 to 100	0.1V/100%	33	Immediately
Pn105	Torque Reference Filter Time Constant	0 to 2500	0.01ms	50	Immediately

5.15.4 Torque Limit Confirmation Signals

Output signal indicating the status of motor output torque limit is shown below.

Туре	Signal Name	Connector Pin Number	Output State	Meaning
Innut	Input /CLT	/CLT Allocated by Pn511	ON	Motor output torque is being limited.
Input			OFF	Output torque is not being limited.

For ways to allocate output signals, see "0 Output Signal Allocation".

5.16 Homing

5.16.1 Function Overview

The Storing Origin function is available after homing.

User can choose whether to home directly after power-up.

User may choose whether to continue homing after a limit or to enter a limit state.

Multiple homing modes are supported.

Storing Origin:

Clear origin data when Pn689.2 = 0.

When Pn689.2 = 1, the Storing Origin is performed after homing is completed, which stores the current single-turn position and the multi-turn position information that can be viewed via Un035 and Un036 respectively. (The origin is stored in parameters Pn694 and Pn695, and will not be displayed). When powering up again, there is no need to perform the homing operation again. The current position of the motor (absolute position with respect to the origin position) can be updated by calculating from the current multi-turn position and single-turn position of the motor as well as the stored position information, and homing done signal is then output. The current position can be viewed via Un009.

Warning A.D9 occurs if the Storing Origin function is switched on and succeeded or the origin stored is lost due to no homing operation.

Homing parameters:

User par	ameters	Meaning
Pn689	b.=== A	Switch off the Homing function Enable the Homing function, which can be triggered by the rising edge of the SHOM signal, or be automatically homed after powering up.
	b.□□B □	O: The first time Servo-on takes effect, no automatic homing is performed and a SHOM signal is required to trigger the homing operation. 1: The first time Servo-on takes effect, the automatic homing is performed without the need for a SHOM signal trigger.
	b.aCa	0: No origin is stored after homing, and the data originally stored in Pn694 and Pn695 is reset. 1: Origin is stored after homing. When the encoder has a multi-turn position (Pn002.2 = 0), the current position of the motor is automatically updated each time the drive is re-powered and the homing done signal is output. If a multi-turn information error alarm such as encoder A47 occurs, the data stored in Pn694 and Pn695 is cleared and the homing done signal is not output.
	b.D==	0: In the process of searching for the trigger point, return to the limit and continue to make homing 1: Homing modes 1~6, search for trigger point and stop when it meets limit, and then enter limit state

- Applicable control mode: position control
- Homing operation can only be enabled when /COIN is ON.
- Position control function is invalid during homing process.
- After changing these parameters, turn the power supply ON again to enable the new settings.
- The input connector pin numbers can be assigned to signals SHOM and ORG by means of user parameters.
- After servo is turned ON, it is impossible to start homing under overtravel state (when P-OT/N-OT is enabled).

5.16.2 Related Parameters

Pn685	Speed of finding referen	nce point (hitting the	origin signal ORG)		
	Range	Unit	Default	Re-powered or not	
	0~3000	rpm	1500	Not required	
Pn686	Speed of finding reference point (leaving the origin signal ORG)				
	Range	Unit	Default	Re-powered or not	
	0~200	rpm	30	Not required	
Pn690	Number of homing offs	et pulses			
	When homing mode is a setting of the offset puls	,	positive limit decele	ration), the positive	
	When homing mode is 8 and 10 (in the case of reverse limit deceleration), the reverse setting of the offset pulse number is invalid.				
	Range	Unit	Default	Re-powered or not	
	-9999~9999	10000 Pulse	0	Not required	
Pn691	Number of homing offs	et pulses			
	When homing mode is 7 and 9 (in the case of positive limit deceleration), the positive setting of the offset pulse number is invalid.				
	When homing mode is 8 and 10 (in the case of reverse limit deceleration), the reverse setting of the offset pulse number is invalid.				
	Range	Unit	Default	Re-powered or not	
	-9999~9999	1Pulse	0	Not required	
Pn692	The homing mode is valid after re-powering on.				
Pn693	Homing acceleration, time taken to accelerate to 1,000rpm, in ms				

- When homing mode is 7 and 9 (in the case of positive limit deceleration), the positive setting of the offset pulse number is invalid.
- When homing mode is 8 and 10 (in the case of reverse limit deceleration), the reverse setting of the offset pulse number is invalid.

5.16.3 Selection of Homing Modes

Select homing mode using Pn692. The Homing mode is valid after re-powering on.

Parameter	Setting	Meaning	When Enabled
Pn692	0	Use current position as the origin	After

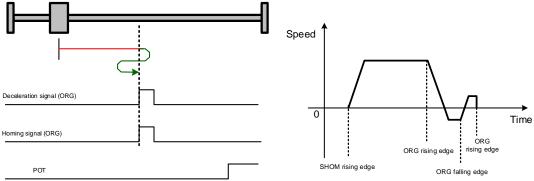
Parameter	Setting	Meaning	When Enabled
	1	Forward homing, and use deceleration point and origin as the ORG switch	restart
	2	Reverse homing, and use deceleration point and origin as the ORG switch	
	3	Forward homing, and use the deceleration point as the ORG switch, and the origin as the motor's Z signal	
	4	Reverse homing, and use the deceleration point as the ORG switch, and the origin ass the motor's Z signal	
	Forward homing, and use the deceleration point and origin as the motor's Z signal		
	6	Reverse homing, and use deceleration point and origin as the motor's Z signal	
	7	Forward homing, use the deceleration point and origin as the overtravel switches	
	8	Reverse homing, and use deceleration point and origin as the overtravel switches	
	9	Forward homing, and use the deceleration point as an overtravel switch, and the origin as the motor's Z signal	
	10	Reverse homing, and use the deceleration point as an overtravel switch, and the origin as the motor's Z signal	
	11	Power-up and run to home; only applicable when $Pn005.1 = 1$ and for position control (pulse train command)	

5.16.4 Allocating Homing Signals

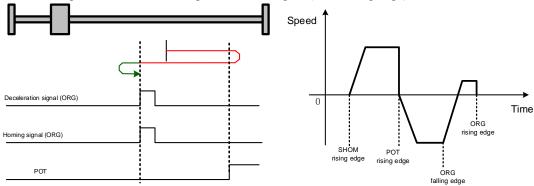
SHOM and ORG signals need to be allocated before homing operation, which can be set via Pn509 or Pn510.

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
		Allocated by	ON= ↑ (rising edge)	Start homing operation.
Input SHOM	Pn509 or Pn510	OFF= Non-rising edge signal	Homing operation is not executed.	
Innut	ODG	Allocated by	ON=High level	Reference position of homing point is valid
Input ORG	Pn509 or Pn510	OFF=Low level	Reference position of homing point is invalid	

Set the output signal (/HOME) after homing via Pn511.

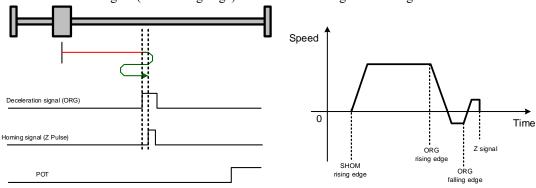

	Connector Pin Number		
Setting	+ Terminal	- Terminal	Meaning
Pn511.0=8	CN1-11	CN1-12	The signal is output from output terminal CN1-11,12.
Pn511.1=8	CN1-5	CN1-6	The signal is output from output terminal CN1-5,6.
Pn511.2=8	CN1-9	CN1-10	The signal is output from output terminal CN1-9,10.

[Note] HOME signal is only enabled at low level (ON).

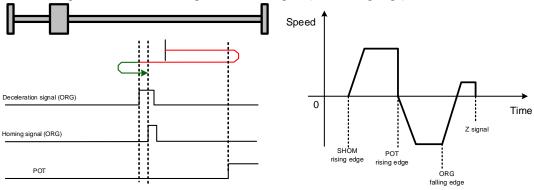

5.16.5 Homing Timing Sequence

Homing modes 1 and 2, using deceleration point and origin as ORG switch

Hit the deceleration signal (ORG rising edge) before encountering the limit signal.

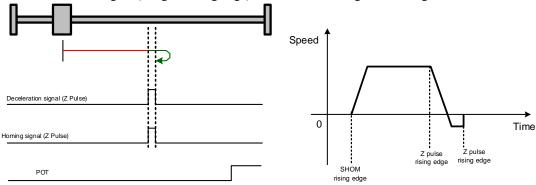


Hit the limit signal before encountering deceleration signal (ORG rising edge).

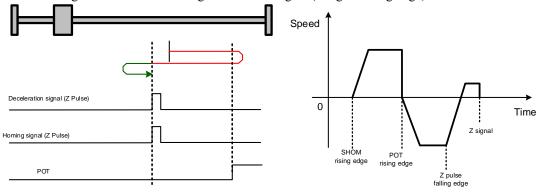


Homing modes 3 and 4, using deceleration point as ORG switch, and origin as Motor's Z signal

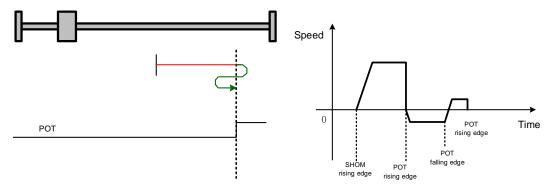
Hit the deceleration signal (ORG rising edge) before encountering the limit signal.



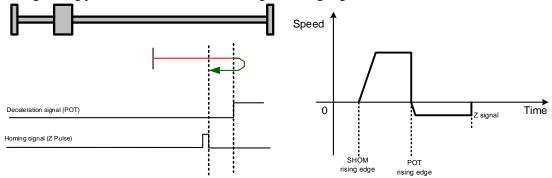
Hit the limit signal before encountering deceleration signal (ORG rising edge).



Homing modes 5 and 6, using origin as motor's Z signal


Hit the deceleration signal (Z signal rising edge) before encountering the limit signal.

Hit the limit signal before encountering deceleration signal (Z signal rising edge).



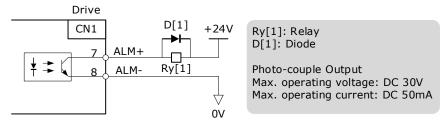
Homing modes 7 and 8, using deceleration point and origin as overtravel switch

Homing modes 9 and 0, using deceleration point as overtravel switch, and origin as motor's Z signal

Homing finding point does not return when hitting the falling edge of OT.

5.17 Other Output Signals

5.17.1 Alarm Output Signal (/ALM)


The servo drive outputs an alarm output signal (/ALM) when it detects an alarm.

Connection of Alarm Output Signal

The external circuit formed by /ALM must satisfy following conditions: the main circuit power supply of the servo drive is turned OFF through the signal output.

The following diagram shows the right way to connect the Alarm Output Signal:

An external +24V I/O power supply is required.

Туре	Signal Name	Connector Pin Number	Signal State	Meaning	
Output /ALM	/ALM	CN1-7, 8	ON	Servo drive is operating normally.	
			OFF	Servo drive is in alarm status	

Ways to Reset Alarm

When "servo alarm (ALM)" happens, always remove alarm reasons first, and then turn the input signal "/ALM-RST" to ON position to reset alarm status.

Туре	Signal Name	Connector Pin Number	Meaning		
Input	ALM-RST	CN1-39	Alarm resets		

Be sure to check the cause of the alarm before alarm reset. For the alarm troubleshooting, refer to "10.2 Troubleshooting".

NOTE

- Some alarms may not be reset by the ALM-RST signal. In this case, reset after cutting off the control power.
- User may also try to reset the current alarm by pressing the [◄] key on the operation panel.

5.17.2 Rotation Detection Output Signal (/TGON)

/TGON is output when the motor is currently operating above the setting set in parameter Pn503.

Signal Specification

Туре	Signal Name	Connector Pin Number	Signal State	Meaning
Output	/TGON	CN1-5, 6	ON	Motor is running at a speed above the value set in Pn503.
			OFF	Motor is running at a speed lower than the value set in Pn503.

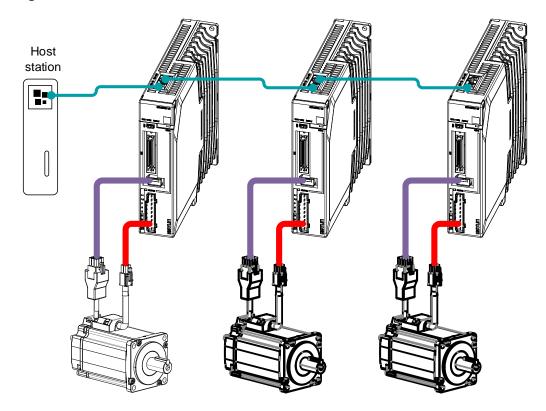
Related Parameters

Number	Name	Range	Unit	Default	When Enabled
Pn503	Detection Speed	0 to 3000	rpm	20	Immediately

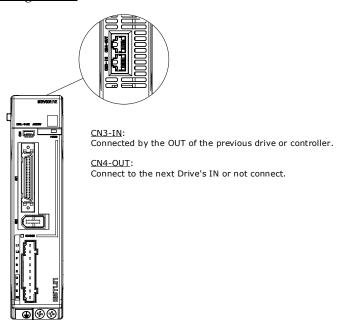
5.17.3 Servo Ready (/S-RDY) Output Signal

The servo drive outputs the servo READY signal (/S-RDY) after receiving servo ON (S-ON) signal. The signal is output under the following conditions:

- The main circuit power supply is ON.
- No alarm occurs.


The specification of signal is as follows:

Туре	Signal Name	Connector Pin Number	Signal State	Meaning	
Output	/S-RDY	CN1-9, 10	ON	Status of the servo ON (S-ON) signal can be receive	
			OFF	Status of the servo ON (S-ON) signal cannot be received.	


Chapter 6 CANopen Communication

6.1 Wiring and Connection

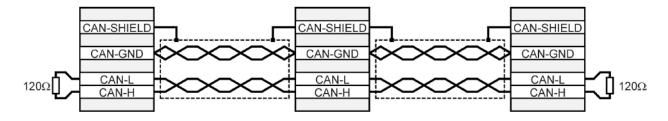
Connection diagram

Terminal arrangement

Signal Definition

The external communication connection terminals (CN3-IN and CN4-OUT) are of RJ45 connectors. The interface line as the master or controller is connected from CN3-IN, and CN4-OUT is connected to the CN3-IN terminal of next drive (slave).

Connector	Pin	Definition	Description
	1	_	Dagamyad
	2	_	Reserved
	3	RS485+	RS-485 communication terminal +
	4	GNDW	- Signal GND
	5	GNDW	
	6	RS485-	RS-485 communication terminal -
	7	CANH	CAN communication terminal
	8	CANL	CAN communication terminar
	Housing	FG	Shielded wire is connected to the housing


[Note] The signal definitions of CN3-IN and CN4-OUT are the same.

Wiring Instructions

When wiring the CANopen communication, following precarious shall be taken.

- Do not short connect pin 1 and pin 2.
- Use UTPs (at least 2 pairs) with shielding layer.
 One pair of UTPs is connected to CANL and CANH; the other is connected to ISO_GND.
- The shielding layer is generally grounded reliably at a single point.
- To prevent signal reflection, it is recommended to connect two 120Ω (1%, 1/4W) terminal matched resistors at both ends of the bus.
- It is recommended that the CAN bus networking node is ≤ 16 .

The wiring diagram is shown below.

6.2 CANopen Overview

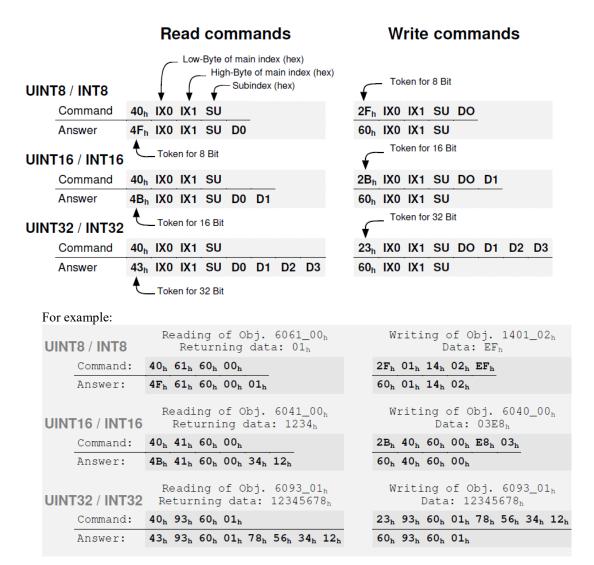
6.2.1 CAN Identifier List

Object	COB-ID bit10tobit7	COB-ID (Hexadecimal)	Index in OD
NMT	0000	000 h	_
SYNC	0001	080h	1005 _h 、1006 _h 、 1007 _h
TIME STAMP	0010	100 _h	1012 _h 1013 _h
EMCY	0001	081 _h to 0FF _h	1024 _h 、1015 _h
PDO1 (transmit)	0011	181h to 1FFh	1800h
PDO1 (receive)	0100	201 _h to 27F _h	1400h
PDO2 (transmit)	0101	281h to 2FFh	1801հ
PDO2 (receive)	0110	301h to 37Fh	1401հ
PDO3 (transmit)	0111	381h to 3FFh	1802 _h
PDO3 (receive)	1000	401h to 47Fh	1402h
PDO4 (transmit)	1001	481h to 4FFh	1803h
PDO4 (receive)	1010	501h to 57Fh	1403հ
SDO (transmit)	1011	581 _h to 5FF _h	1200 _h
SDO (receive)	1100	601 h to 67F h	1200 _h
Heartbeat	1110	701h to 77Fh	1016հ、1017հ

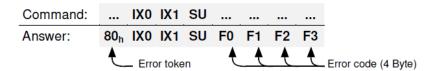
6.2.2 Service Data Objects (SDO)

SDO is used to visit the object dictionary of a device. Visitor is called client. The CANopen device whose object dictionary is visited and required to supply the asked service is called server. CANopen messages from a client and servo all contain 8 bits (not all of them are meaningful). A request from a client must be confirmed by a server.

There are 2 method of transferring SDO:


- Expedited transfer: contains 4 bytes at maximum
- Segmented transfer: contains more than 4 bytes

Basic structure of SDO:


Byte0	Byte1 to Byte2	Byte3	Byte4 to Byte7
SDO	Object index	Object sub-index	Data

SDO read/write structure:

SDO message format for parameter read/write operation:

Format of SDO read/write error message:

Error code is defined as follows:

Error code F3 F2 F1 F0	Description
$05\ 03\ 00\ 00_h$	Toggle bit not alternated
05 04 00 01 _h	Client / server command specifier not valid or unknown
$06\ 01\ 00\ 00_h$	Unsupported access to an object
$06\ 01\ 00\ 01_h$	Attempt to read a write only object
$06\ 01\ 00\ 02_h$	Attempt to write a read only object
$06\ 02\ 00\ 00_h$	Object does not exist in the object dictionary
06 04 00 41 _h	Object cannot be mapped to the PDO
06 04 00 42 _h	The number and length of the objects to be mapped would exceed PDO length
$06\ 04\ 00\ 47_h$	General internal incompatibility in the device
$06\ 07\ 00\ 10_h$	Data type does not match, length of service parameter does not match
$06\ 07\ 00\ 12_h$	Data type does not match, length of service parameter too high
$06\ 07\ 00\ 13_h$	Data type does not match, length of service parameter too low
$06\ 09\ 00\ 11_h$	Sub-index does not exist
$06\ 04\ 00\ 43_h$	General parameter incompatibility
$06\ 06\ 00\ 00_h$	Access failed due to an hardware error *1)
$06\ 09\ 00\ 30_h$	Value range of parameter exceeded
$06\ 09\ 00\ 31_h$	Value of parameter written too high
$06\ 09\ 00\ 32_h$	Value of parameter written too low
$06\ 09\ 00\ 36_h$	Maximum value is less than minimum value
$08\ 00\ 00\ 20_h$	Data cannot be transferred or stored to the application *1)
$08\ 00\ 00\ 21_h$	Data cannot be transferred or stored to the application because of local control
08 00 00 22 _h	Data cannot be transferred or stored to the application because of the present device state $^{\star 3)}$
08 00 00 23 _h	No Object Dictionary is present *2)

6.2.3 Process Data Objects (PDO)

PDO is applied to transferring real time data which will be conveyed from a producer to one or multiple clients. Data transferring will be limited to 1 to 8 bytes. There is no hand-shake restriction in PDO communication, which means data has been redefined, so clients could process the received data for vary short time. PDO content will be only defined by its CAN ID, assuming producers and clients know PDO content from its CAN ID.

2 objects in object dictionary are used for each PDO.

- PDO communication parameter: It contains COB-ID, transferring type, restriction time and cycle of timer used by PDO.
- PDO mapping parameter: It contains a list of objects in the object dictionary. These objects are mapped
 into PDO, includes their data length in bits. Producers and clients must know this mapping to explain
 the content of PDO.

The content of PDO's message is predefined or configured when the network initializes. Mapping application object into PDO is described in object dictionary. If a device (producer and client) support dynamic mapping, SDO could be used to configure PDO's mapping parameter. Our servo drive supports dynamic PDO mapping. There are 2 rules for PDO mapping to follow:

- Each PDO could be mapped into 4 objects.
- The length of each PDO will be no more than 64 bits.

PDO mapping process

1. Set the sub-index of PDO coordinated mapping parameter (e.g. 1600 h or 1A00 h) as o.

- 2. Revise the sub-index from 1 to 4 of PDO coordinated mapping parameter (e.g. 1600 h or 1A00 h).
- 3. Set the sub-index 0 of PDO coordinated mapping parameter (e.g. 1600 h or 1A00 h) as legal Number (number of PDO's mapping objects)
- 4. PDO mapping completed.

Ways to transmit PDO

- Synchronous (synchronization by receiving SYNC object)
 - Cycle: Transmission triggered after every 1 to 240 SYNC messages.
- Asynchronous

Transmission triggered by special object event regulated in sub-object protocol.

Definition of transmission type of PDO

Transmission Type	Description	PDO Type
0	Reserved	_
1to240	SYNC: It represents the number of SYNC objects between 2 PDOs.	TPDO/RPDO
240to253	Reserved	
254	Asynchronous: If the content of PDO has changed, PDO transmission will be triggered.	TPDO
255	Asynchronous: The content of PDO will be periodically updated and transmitted.	TPDO/RPDO

One PDO could set a frozen time which is the shortest interval time between 2 continuous PDO. It could prevent the bus from being occupied by amount of data with high priority. Frozen time is defined by 16 bit unsigned integer number and its unit is 100us

One PDO could set a timing period. When the regulated time is violated, a PDO transmit could be triggered without a trigger bit. Object timing period is defined as 16 bit unsigned integer and its unit is 1ms.

PDO mapping example

Map the 3 objects to PDO1 (transmit). PDO1 (transmit) is required to be asynchronous periodic type with period time as much as 10ms and frozen time as much as 2ms.

Object	Index — Sub-index	Description
statusword	6041 _h - 00 _h	Status word
modes_of_operation_display	6061 _h - 00 _h	Practical operational mode
Position_Actual_Value	6064 _h - 00 _h	Practical position

- 1. Clear number_of_mapped_objects number_of_mapped_objects(1A00 h: 00 h)= 0
 - 2. Set the parameter for mapping objects

```
 \begin{array}{ll} \mbox{Index} = 6041 \ \mbox{$h$} & \mbox{Subin.} = 00 \mbox{$h$} \mbox{$Length} = 10 \ \mbox{$h$} \Rightarrow 1 \mbox{$st\_mapped\_object} (1A00 \ \mbox{$h$} \mbox{$:} 01 \ \mbox{$h$}) = 60410010 \ \mbox{$h$} \\ \mbox{Subin.} = 00 \mbox{$h$} \mbox{$Length} = 08 \ \mbox{$h$} \Rightarrow 2 \mbox{$st\_mapped\_object} (1A00 \ \mbox{$h$} \mbox{$:} 02 \ \mbox{$h$}) = 60610008 \ \mbox{$h$} \\ \mbox{Subin.} = 00 \mbox{$h$} \mbox{$Length} = 20 \ \mbox{$h$} \Rightarrow 3 \mbox{$st\_mapped\_object} (1A00 \ \mbox{$h$} \mbox{$:} 03 \ \mbox{$h$}) = 60 \mbox{$FD0020$} \mbox{$h$} \\ \mbox{$h$} \mbox{
```

- 3. Set number_of_mapped_objects number_of_mapped_objects(1A00 h: 00 h)= 3
- 4. Set PDO communication parameter

PDO1 (transmit) is asynchronous periodical type \Rightarrow transmit_type (1800 h: 02 h)= FF h Frozen time 2ms(20×100us) \Rightarrow inhibit_time (1800 h: 03 h)= 14 h Period time 10ms(10×1ms) \Rightarrow event_time (1800 h: 05 h)= 0A h

5. PDO mapping completed.

PDO Parameters

Drive contains 4 transmit PDOs and 4 receive PDOs. The detailed communication parameter and mapping parameter of the first transmit/receive PDO is as below and those of the rest 3 transmit/receive PDO are the same as the first PDO.

Index	1800 h	
Name	transmit_pdo_parameter_tpdo1	
Object Code	RECORD	
No. of Elements	4	
Sub-Index	01 ь	
Description	cob_id_used_by_pdo_tpdo1	
Data Type	UINT32	
Access	RW	
PDO Mapping	NO	
Units		
Value Range	181 h1FF h, Bit 31 may be set	
Default Value	181 h	
Sub-Index	02 h	
Description	transmission_type_tpdo1	
Data Type	UINT8	
Access	RW	
PDO Mapping	NO	
Units		
Value Range	1240,254,255	
Default Value	255	
Sub-Index	03 h	
Description	inhibit_time_tpdo1	
Data Type	UINT16	
Access	RW	
PDO Mapping	NO	
Units	100μs	
Value Range		
Default Value	100	
Sub-Index	05 h	
Description	event_time_tpdo1	

Data Type	UINT16
Access	RW
PDO Mapping	NO
Units	1ms
Value Range	
Default Value	10

Index	1A00 h
Name	transmit_pdo_mapping_tpdo1
Object Code	RECORD
No. of Elements	2

Sub-Index S	ee table 00 h
Description	number_of_mapped_objects_tpdo1
Data Type	UINT8
Access	RW
PDO Mapping	NO
Units	
Value Range	04
Default Value	2

Sub-Index	01 h
Description	first_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	See table

Sub-Index	02 h
Description	second_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	See table

Sub-Index 03 h

Description	third_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	See table

Sub-Index	04 h
Description	fourth_mapped_object_tpdo1
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	
Default Value	See table

T-PDO1

Index	Comment	Туре	Acc.	Default Value
1800 h _00 h	number of entries	UINT8	RO	04 н
1800 h _01 h	COB-ID used by PDO	UINT32	RW	00000181 h
1800 h _02 h	transmission type	UINT8	RW	FF h
1800 h _03 h	inhibit time (100 μs)	UINT16	RW	64 н
1800 h _05 h	event time (1ms)	UINT16	RW	0А ь
1A00 h _00 h	number of mapped objects	UINT8	RW	02 ь
1A00 h _01 h	first mapped object	UINT32	RW	60410010 ь
1A00 h _02 h	second mapped object	UINT32	RW	60640020 ь
1A00 h _03 h	third mapped object	UINT32	RW	00 ь
1A00 h _04 h	fourth mapped object	UINT32	RW	00 ь

T-PDO2

Index	Comment	Туре	Acc.	Default Value
1801 h _00 h	number of entries	UINT8	RO	04 н
1801 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000281 h
1801 _h _02 _h	transmission type	UINT8	RW	FF h
1801 h _03 h	inhibit time (100 μs)	UINT16	RW	64 н

Index	Comment	Туре	Acc.	Default Value
1801 н_05 н	event time (1ms)	UINT16	RW	0А н
1A01 h _00 h	number of mapped objects	UINT8	RW	02 ь
1A01 h _01 h	first mapped object	UINT32	RW	60640020 ь
1A01 h _02 h	second mapped object	UINT32	RW	60610010 ь
1A01 h _03 h	third mapped object	UINT32	RW	00 ь
1A01 h _04 h	fourth mapped object	UINT32	RW	00 ь

T-PDO3

Index	Comment	Туре	Acc.	Default Value
1802 h _00 h	number of entries	UINT8	RO	04 h
1802 h _01 h	COB-ID used by PDO	UINT32	RW	00000381 h
1802 h _02 h	transmission type	UINT8	RW	FF h
1802 h _03 h	inhibit time (100 μs)	UINT16	RW	64 н
1802 h _05 h	event time (1ms)	UINT16	RW	0A h
1A02 h _00 h	number of mapped objects	UINT8	RW	00 ь
1A02 h _01 h	first mapped object	UINT32	RW	0 н
1A02 h _02 h	second mapped object	UINT32	RW	0 h
1A02 h _03 h	third mapped object	UINT32	RW	00 н
1A02 h _04 h	fourth mapped object	UINT32	RW	00 ь

T-PDO4

Index	Comment	Туре	Acc.	Default Value
1803 h _00 h	number of entries	UINT8	RO	04 н
1803 h _01 h	COB-ID used by PDO	UINT32	RW	00000481 h
1803 h _02 h	transmission type	UINT8	RW	FF h
1803 h _03 h	inhibit time (100 μs)	UINT16	RW	64 н
1803 h _05 h	event time (1ms)	UINT16	RW	0А н
1A03 h _00 h	number of mapped objects	UINT8	RW	00 н
1A03 h _01 h	first mapped object	UINT32	RW	О њ
1A03 h _02 h	second mapped object	UINT32	RW	О њ
1A03 _h _03 _h	third mapped object	UINT32	RW	00 h
1А03 н _04 н	fourth mapped object	UINT32	RW	00 н

If **transmit type is 254** (if PDO content has changed, such PDO is triggered to send), use of the following object can shield parts of PDO changers. Only when the un-shield bit has changed, PDO occurs. If wants shielding any bit, the corresponding bit of object write to 0.

tpdo_1_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2000 h _00 h	number of entries	UINT8	RO	02 ь
2000 h _01 h	tpdo_1_transmit_mask_low	UINT32	RW	FFFFFFF h
2000 h _02 h	tpdo_1_transmit_mask_high	UINT32	RW	FFFFFFF h

tpdo_2_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2001 h _00 h	number of entries	UINT8	RO	02 h
2001 h _01 h	tpdo_2_transmit_mask_low	UINT32	RW	FFFFFFF h
2001 h _02 h	tpdo_2_transmit_mask_high	UINT32	RW	FFFFFFF h

tpdo_3_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2002 h _00 h	number of entries	UINT8	RO	02 н
2002 h _01 h	tpdo_1_transmit_mask_low	UINT32	RW	FFFFFFF h
2002 н _02 н	tpdo_1_transmit_mask_high	UINT32	RW	FFFFFFF h

tpdo_4_transmit_mask

Index	Comment	Туре	Acc.	Default Value
2003 h _00 h	number of entries	UINT8	RO	02 ь
2003 h _01 h	tpdo_2_transmit_mask_low	UINT32	RW	FFFFFFFF h
2003 h _02 h	tpdo_2_transmit_mask_high	UINT32	RW	FFFFFFFF h

R-PDO1

Index	Comment	Туре	Acc.	Default Value
1400 н _00 н	number of entries	UINT8	RO	02 н
1400 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000201 h
1400 н _02 н	transmission type	UINT8	RW	FF h
1600 н _00 н	number of mapped objects	UINT8	RW	02 н

Index	Comment	Туре	Acc.	Default Value
1600 н _01 н	first mapped object	UINT32	RW	60400010 ь
1600 h _02 h	second mapped object	UINT32	RW	60FF0020 h
1600 н _03 н	third mapped object	UINT32	RW	00 ь
1600 h _04 h	fourth mapped object	UINT32	RW	00 ь

R-PDO2

Index	Comment	Туре	Acc.	Default Value
1401 h _00 h	number of entries	UINT8	RO	02 h
1401 h _01 h	COB-ID used by PDO	UINT32	RW	00000301 h
1401 h _02 h	transmission type	UINT8	RW	FF h
1601 _h _00 _h	number of mapped objects	UINT8	RW	02 h
1601 н_01 н	first mapped object	UINT32	RW	60FF0020 h
1601 н _02 н	second mapped object	UINT32	RW	60600010 h
1601 _h _03 _h	third mapped object	UINT32	RW	00 h
1601 н_04 н	fourth mapped object	UINT32	RW	00 ь

R-PDO3

Index	Comment	Туре	Acc.	Default Value
1402 н _00 н	number of entries	UINT8	RO	02 ь
1402 h _01 h	COB-ID used by PDO	UINT32	RW	00000401 н
1402 н _02 н	transmission type	UINT8	RW	FF h
1602 н _00 н	number of mapped objects	UINT8	RW	00 ь
1602 н _01 н	first mapped object	UINT32	RW	О ь
1602 н _02 н	second mapped object	UINT32	RW	О ь
1602 н _03 н	third mapped object	UINT32	RW	00 н
1602 н _04 н	fourth mapped object	UINT32	RW	00 н

R-PDO4

Index	Comment	Туре	Acc.	Default Value
1403 h _00 h	number of entries	UINT8	RO	02 h
1403 _h _01 _h	COB-ID used by PDO	UINT32	RW	00000501 h
1403 _h _02 _h	transmission type	UINT8	RW	FF h

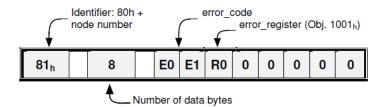
Index	Comment	Туре	Acc.	Default Value
1603 н _00 н	number of mapped objects	UINT8	RW	00 ь
1603 н_01 н	first mapped object	UINT32	RW	О h
1603 н _02 н	second mapped object	UINT32	RW	0 н
1603 н _03 н	third mapped object	UINT32	RW	00 ь
1603 н _04 н	fourth mapped object	UINT32	RW	00 ь

6.2.4 SYNC Message

Synchronization object is used for controlling data synchronize transmit. For example, starting synchronously several axes. The transmission of synchronous message is based on Producer-Customer model. All the nodes of synchronous PDO can receive (at the same time) the message as customer and synchronize other node.

The general mode is that the SYNC master node sends the SYNC object regularly, and the SYNC slave node executes the task synchronously upon receiving it.

CANopen suggests a COB-ID with highest priority to ensure that synchronized signal could be transmitted properly. Without transferring data, SYNC message could be as short as possible.


The COB-ID of the SYNC message is fixed at 080h, and the COB-ID can be read from 1005 h in the object dictionary.

Index	1005 h
Name	cob_id_sync
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	NO
Units	
Value Range	80000080 h, 00000080 h
Default Value	00000080 h

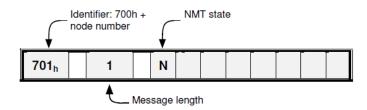
6.2.5 Emergency Message

When an alarm occurs to drive, CANopen will initiate an Emergency message to inform the current drive type and error code to clients. Error code displayed on panel can be read on low byte of 603Fh object.

Structure of Emergency Message:

error_code (Hex)	Description
2310	Over current

error_code (Hex)	Description
3100	Instantaneous power failure
3110	Over voltage
3120	Under voltage
5080	RAM exception
5210	AD sampling error
5420	Regenerative resistor error
5421	Regenerative resistor exception
5581	Parameter checksum exception
5582	Electric gear error
5583	Motor type or drive type error
6100	Illegal error code
6120	PDO mapping error
6300	CAN communication error(Address or communication baud rate error)
7303	serial encoder error
7305	Incremental encoder error
7380	Resolver error
8100	CAN communication exception
8110	CAN bus overflow
8120	PASSIVE CAN bus turn to PASSIVE
8130	Heartbeat error
8140	CAN BUS OFF
8200	Length of CAN messages error
8210	Length of receiving PDO error
8311	Overload alarm
8480	Over speed alarm

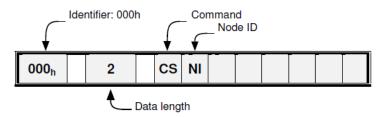

Related Parameters

Index	1003 _h
Name	pre_defined_error_field
Object Code	ARRAY
No. of Elements	4
Data Type	UINT32

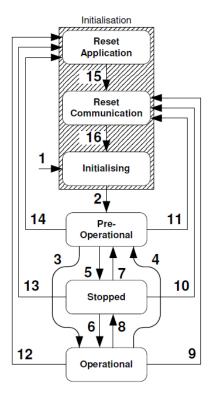
Sub-Index	01 ь
Description	standard_error_field_0
Access	RO
PDO Mapping	NO
Units	
Value Range	
Default Value	
Sub-Index	02 ь
Description	standard_error_field_1
Access	RO
PDO Mapping	NO
Units	
Value Range	
Default Value	
Sub-Index	03 ы
Description	standard_error_field_2
Access	RO
PDO Mapping	NO
Units	
Value Range	
Default Value	
Sub-Index	04 h
Description	standard_error_field_3
Access	RO
PDO Mapping	NO
Units	
Value Range	
Default Value	

6.2.6 HEARTBEAT Message

Structure of Heartbeat Message

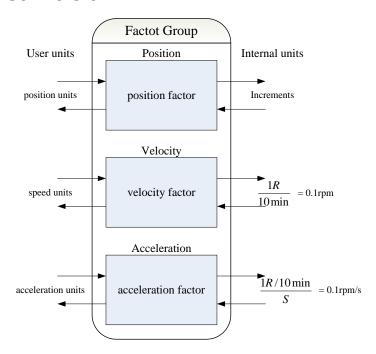


Related Parameters


Index	1017 _h
Name	producer_heartbeat_time
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	NO
Units	ms
Value Range	0 - 65535
Default Value	1000

6.2.7 Network management (NMT service)

Structure of Message


NMT state transition diagram

CS	Meaning	Transition	Target state
01 _h	Start Remote Node	3, 6	Operational
02 _h	Stop Remote Node	5, 8	Stopped
80 _h	Enter Pre-Operational	4, 7	Pre-Operational
81 _h	Reset Application	12, 13, 14	Reset Application
82 _h	Reset Communication	9, 10, 11	Reset Communication

Name	Meaning	SDO	PDO	NMT
Reset Application	No communication. All CAN objects are set to their reset values (application parameter set).	-	-	-
Reset Communication	No communication. The CAN controller will be re-initialised.		-	-
Initialising	State after Hardware Reset. Reset of the CAN node, sending of the Bootup message	-	-	-
Pre-Operational	Communication via SDOs possible. PDOs inactive (No sending / receiving)	X	-	X
Operational	Communication via SDOs possible. PDOs active (sending / receiving)	X	X	X
Stopped	No communication except heartbeat + NMT	-	-	X

6.3 Unit Conversion

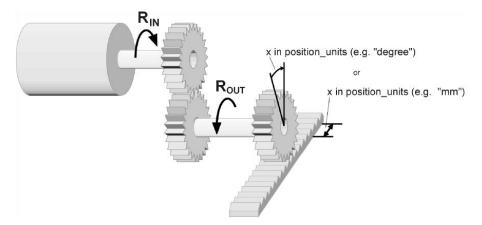
Default user unit of the drive:

Object	Name	Unit	Description
Length	position units	Increments	Pulse *
Speed	speed units	1R /10min	0.1rpm
Acceleration	Acceleration units	1R/10min/s	0.1rpm/s
Jerk	jerk units	pulse/(s*100μs*100μs)	Value ranged from 1 to 20, the smaller the smoother

^{*:} Ordinary incremental encoder outputs 10,000 pulses per revolution; Rotary encoder outputs 65,536 pulses per revolution;

6.3.1 Parameters for Unit Conversion

Index	Object	Name	Туре	Attr.
6093 н	ARRAY	position factor	UINT32	RW
6094 н	ARRAY	velocity factor	UINT32	RW
6097 h	ARRAY	acceleration factor	UINT32	RW


¹⁷⁻bit encoder outputs 131,072 pulses per revolution;

²⁰⁻bit encoder outputs 1,048,576 pulses per revolution;

6.3.2 Position factor

Position factor module converts all the measuring units of client into internal unit of servo drive (pulse) and at the same time converts the unit (pulse) of all the output from the drive into the measuring unit of clients (position units). Position factors includes numerator and division.

Index	
macx	6093 h
Name	position factor
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32
Sub-Index	01 ь
Description	numerator
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	Initialized to the value of Pn201 when power on
Sub-Index	02 h
Description	division
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	Initialized to the value of Pn202 when power on

For calculating the position factors easily, 2 parameters as below are defined:

- gear_ratio: Reduction ration between the load shaft and the motor shaft. (When motor's revolution is n and load's revolution is m, then **gear_ratio** = m/n)
- feed_constant: the distance of position units' movement when load shaft rotates for one revolution.

position factor is calculated according to:

$$\label{eq:position_factor} \textbf{position} \hspace{0.2cm} \textbf{factor} = \frac{\text{numerator}}{\text{division}} \hspace{0.2cm} = \frac{\text{gear_ratio} * \text{encoder_resolution}}{\text{feed_constant}}$$

Encoder Type	encoder_resolution (Unit: Inc)
Normal incremental encoder	10000
Resolver encoder	65535
17-bit encoder	131072
20-bit encoder	1048576

6.3.3 Velocity factor

Velocity factor module converts all the speed measuring unit at customer side into drive's internal measuring unit as much as 0.1rpm. And at the same time, it converts the drive's output velocity unit (0.1rpm) into user's velocity units. Velocity factor parameters includes a numerator and a division.

Index	6094 _h	
Name	velocity factor	
Object Code	ARRAY	
No. of Elements	2	
Data Type	UINT32	

Sub-Index	01 h
Description	numerator
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1

Sub-Index	02 h
Description	division
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1

For calculating velocity factor easily, 3 parameters are defined as below:

- time_factor_v: drive's internal time unit and user's time unit. (For example: 1 min = 1/10 10 min)
- gear_ratio: the reduction ration between the load shaft and the motor shaft. (When motor's revolution is n and load's revolution is m, then **gear_ratio** = n/m)
- feed_constant: the distance of position units' movement when load shaft rotates for one revolution.

velocity factor is calculated according to:

$$velocity \ \ factor = \frac{numerator}{division} \ \ = \frac{gear_ratio*time_factor_v}{feed_constant}$$

6.3.4 Acceleration factor

Acceleration factor module converts all the acceleration units at the perspective of clients into drive's internal unit (0.1rpm) and at the same time converts the output acceleration units (0.1rpm) from the drive into acceleration units at the perspective of clients. Acceleration factor parameters contain numerator and division.

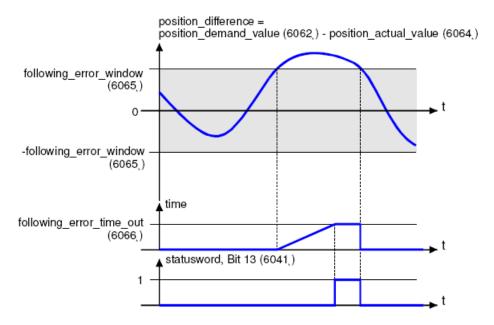
Index	6097 h
Name	acceleration factor
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32

Sub-Index	01 h
Description	numerator
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1

Sub-Index	02 ь
Description	division
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	1

For calculating velocity factor easily, we could define 3 variables as below:

- time_factor_a: The ratio between drive's internal time square and clients' time square. (For example: 1 min2 = 1 min*min = 60s*1 min = 60/10 10 min/s)
- gear_ratio: the reduction ration between the load shaft and the motor shaft. (When motor's revolution is n and load' s revolution is m, then gear_ratio = n/m)
- feed_constant: the distance of position units' movement when load shaft rotates for one revolution.


acceleration factor is calculated according to:

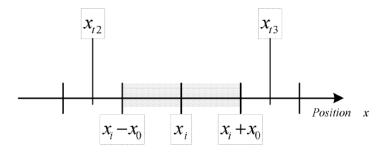
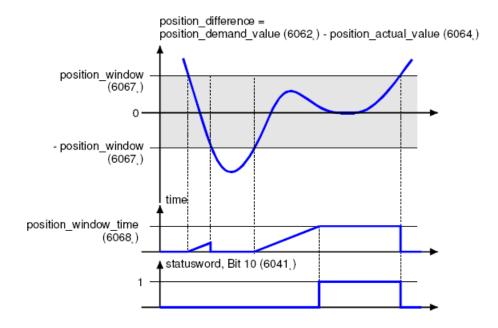
$$acceleration \ factor = \frac{numerator}{division} \ = \frac{gear_ratio * time_factor_a}{feed_constant}$$

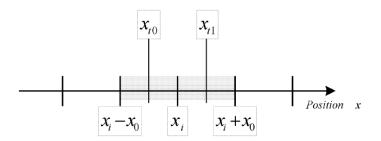
6.4 Position Control Function

The demanding position (position_demand_value) output from Trajectory unit is the input of drive's position loop. Besides, the actual position(position_actual_value) is measured through the motor's encoder. Position control is influenced by parameter settings. To ensure the stability of the control system, we have to limit the output of postion loop (control_effect). This output becomes the given speed for speed loop. In the Factor group, all the input and output are transformed into the internal measuring unit of the servo drive.

Following Error

The deviation of the actual position value (position_actual_value) from the desired position value (position_demand_value) is named following error. As shown in figure above, if for a certain period of time this following error is bigger than specified in the following error window (following_error_window) bit 13 (following_error) of the object statusword will be set to 1.


Figure above shows how the window function is defined for the message "following error". The range between xi-x0 and xi+x0 is defined symmetrically around the desired position (position_demand_value) xi. For example the positions x_{t2} and x_{t3} are outside this window (following_error_window). If the drive leaves this window and does not return to the window within the time defined in the object following error time out then bit 13 (following error) in the statusword will be set to 1.

Position Reached

This function offers the chance to define a position window around the target position (target_position). If the actual position of the drive is within this range for a certain period of time – the position_window_time – bit 10 (target_reached) will be set to 1 in the statusword. As shown in figure below.

The figure below shows the position_windows are symmetrically distributed around the target_position), i.e. the range from xi-x0 to xi+x0. For example, the positionsxt0 and xt1 are in the position windows. If the drive is in the window, a fixed period starts timing. If the fixed period reaches the position_window_time and the drive position is always in the window during the time, then bit10 (target_reached) in the statusword_will be set to 1. As soon as the drive position leaves the window, bit10 (target_reached) in the statusword will be cleared to zero immediately.

Related Parameters

Index	Object	Name	Туре	Attr.
6062 h	VAR	position_demand_value	INT32	RO
6063 h	VAR	position_actual_value*	INT32	RO
6064 н	VAR	position_actual_value	INT32	RO
6065 h	VAR	following_error_window	UINT32	RW
6066 н	VAR	following_error_time_out	UINT16	RW
6067 н	VAR	position_window	UINT32	RW
6068 н	VAR	position_time	UINT16	RW
60FA h	VAR	control_effort	INT32	RO

Default Value

Index 6062 h

Name position_demand_value

Object Code VAR

Data Type INT32

Access RO

PDO Mapping YES

Units position units

Value Range --

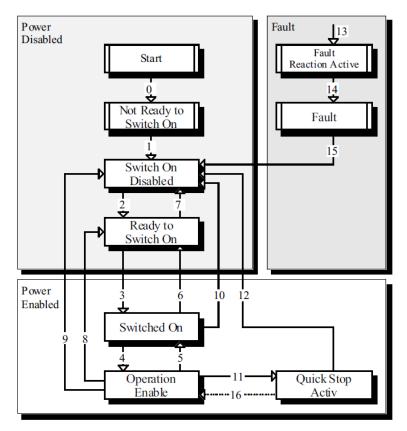
Index 6064 h Name position_ actual _value Object Code VAR Data Type INT32 Access RO **PDO Mapping** YES Units position units Value Range Default Value

Index 6065 h Name following_error_window Object Code VAR Data Type UINT32 RW Access **PDO Mapping** YES Units position units 0-7FFFFFFF h Value Range Default Value 30000

Index6066 hNamefollowing_error_time_outObject CodeVARData TypeUINT16AccessRW

PDO Mapping	YES
Units	ms
Value Range	0 - 65535
Default Value	200

60FA h
control_effort
VAR
INT32
RO
YES
speed units


Index	6067 h
Name	position_window
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	position units
Value Range	
Default Value	10

Index	6068 h
Name	position_time
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	ms
Value Range	0 - 65535
Default Value	50

6.5 Device Control

6.5.1 Control State Machine

The master controls the drive through the controlword, and knows the current status of the drive by reading the statusword of the drive.

According to figure above, the state diagram can be divided into three main parts: "Power Disabled" (means the main power supply is switched off), "Power Enabled" (the main power supply is turned on) and "Fault". All states enter "Fault" after an alarm occurs. After switching on the servo controller initializes itself and enters the state SWITCH_ON_DISABLED. In this state CAN communication is possible and the servo controller can be parameterized (e.g. the working mode of drive can be set to "PP" mode). The main power supply remains switched off and the motor is not excited. Through the state transitions 2, 3 and 4, the state OPERATION_ENABLE will be reached. In this state the main power supply is turned on and the servo controller controls the motor according to the parameterized working mode. Therefore, it must be confirmed that the parameters of the drive have been correctly configured and the corresponding input value is zero before such state. The circuit main power supply will be turned off after state transition 9 is done. Once the driver alarms, the driver enters FAULT.

Status	Description
Not Ready to Switch On	The servo controller executes its self-test. The CAN communication is not working
Switch On Disabled	The self-test has been completed. The CAN communication is activated
Ready to Switch On	Servo driver is waiting for the state of Switch and servo motor is not at main power supply
Switched On	The main power supply is turned on
Operation Enable	The motor is under voltage and is controlled according to working mode
Quick Stop Active	Servo driver will be stopped through its fixed way
Fault Reaction Active	Servo driver tests error and will be stopped through its fixed way, with motor's main power supply turned on

Status	Description
Fault	An error has occurred. The main power supply has been turned off.

6.5.2 Related Parameters of Device Control

Index	Object	Name	Туре	Attr.
6040 h	VAR	controlword	UINT16	RW
6041 h	VAR	statusword	UINT16	RO
605A h	VAR	quick_stop_option_code	INT16	RW
605B h	VAR	shutdown_option_code	INT16	RW
605C h	VAR	disabled_operation_option_code	INT16	RW
605D h	VAR	halt_option_code	INT16	RW
605E h	VAR	fault_reaction_option_code	INT16	RW

6.5.3 Controlword

•	Index			6040) _h						
	Name			cont	rolword	l					
	Object Code			VAF	}						
	Data Type			UIN	T16						
	Access			RW							
	PDO Mapping	5		YES							
	Units										
	Value Range										
_	Default Value			0							
_	15 11	10	9	8	7	6	4	3	2	1	0
	manufacturer specific	rese	erved	halt	Fault reset		peration de specific	Enable operation	Quick stop	Enable voltage	Switch on

Bit0to3 and Bit7

The transmission of the state machine is triggered by the control command composed of those 5 bits.

		Bit o	f the <i>control</i>	word			
Command	Fault reset	Enable operation	Quick stop	Enable voltage	Switch on	Transitions	
Shutdown	0	Χ	1	1	0	2,6,8	
Switch on	0	0	1	1	1	3*	
Switch on	0	1	1	1	1	3**	
Disable voltage	0	X	X	0	X	7,9,10,12	
Quick stop	0	X	0	1	X	7,10,11	
Disable operation	0	0	1	1	1	5	
Enable operation	0	1	1	1	1	4,16	
Fault reset		Х	Х	X	X	15	

[Note] X means this bit could be ignored.

Bit4, 5, 6 and 8

The definition of this 4 bit is different in different control mode.

Bit	Control mode						
Dit	profile position mode	profile velocity mode	homing mode				
4	new_set_point	Reserve	start_homeing_operation				
5	change_set_immediately	Reserve	Reserve				
6	abs/rel	Reserve	Reserve				
8	Halt	Halt	Halt				

Other bits

All reserved.

6.5.4 Statusword

Index	6041 h
Name	statusword
Object Code	VAR
Data Type	UINT16
Access	RO
PDO Mapping	YES
Units	
Value Range	
Default Value	

Explanation of statusword bit is as below:

Bit	Description
0	Ready to switch on
1	Switched on

Bit	Description
2	Operation enabled
3	Fault
4	Voltage enabled
5	Quick stop
6	Switch on disabled
7	Warning
8	Reserved
9	Remote
10	Target reached
11	Internal limit active
13to12	Operation mode specific
15to14	Reserved

Bit0~3, Bit5 and Bit6

The combination of these bits indicates the status of drives.

Value (binary)	State
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

Bit4: Voltage enabled

Main power supply is turned on when this bit is 1.

Bit5: Quick stop

Driver will halt by following settings (605A h: quick_stop_option_code) when this bit is 0.

Bit7: Warning

Driver detects alarm when this bit is 1.

Bit9: Warning

Servo can deal with Controlword when the enabling state of this bit is at 1.

Bit10: Target reached

In different control modes the meaning of this bit is different.

- In profile position mode, when set position is reached, this bit is set. When Halt is booted, speed is reduced to 0 and this bit will be set. When new position is set, this bit will be cleared.
- In profile Velocity Mode, when the speed reaches the targeted speed, this bit will be set. When Halt is booted and speed is reduced to 0, this bit is set.

Bit11: Internal limit active

When this bit is 1, it indicates that internal torque has surpassed the set value, or reached the max forward/reverse limit position. It can be confirmed by reading object 60FDh (digital inputs).

Bit12~13

These 2 bits have different meanings in different control mode.

D:1	Control Mode		
Bit	profile position mode	profile velocity mode	homing mode
12	Set-point acknowledge	Speed	Homing attained
13	Following error	Max slippage error	Homing error

Other bits

All reserved.

6.5.5 Shutdown_option_code

The object shutdown_option_code determines the behavior when the state transition from OPERATION ENABLE to READY TO SWITCH ON is executed.

Index	605B h
Name	shutdown_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	0,1
Default Value	0

Value	Description
0	Drive enters OFF state and stops according to Pn003.0 setting
1	After deceleration stops at 6084h, the drive cuts off the power supply to the motor

6.5.6 Disable_operation_option_code

The object disable_operation_option_code determines the behavior if the state transition from OPERATION ENABLE to SWITCHED ON is executed.

Index	605C h
Name	disable_operation_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	0,1
Default Value	0

Value	Description
0	Drive enters OFF state and stops according to Pn003.0 setting
1	After decelerates and stops at 6084h, the drive will cut off the power supply to the motor

6.5.7 Quick_stop_option_code

The object quick_stop_option_code determines the behavior if the state transition from Operation Enable to Quick Reaction Active is executed.

Index	605A h
Name	quick_stop_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	0,1,2,5,6
Default Value	2

Value	Description
0	Drive enters OFF state and stops according to Pn003.0 setting
1	After decelerates and stops at 6084h, the drive will cut off the power supply to the motor

Value	Description
2	After decelerates and stops at 6085h, the drive will cut off the power supply to the motor
3,4	_
5	After decelerates and stops at 6084h, the drive will stay in QuickStop.
6	After decelerates and stops at 6085h, the drive will stay in QuickStop.

6.5.8 Halt_option_code

halt_option_code determines how to stop when bit.8 (halt) of controlword is set to 1.

Index	605D _h
Name	halt_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	1,2
Default Value	0

Value	Description
1	Motor decelerates and stops.
2	Motor decelerates and stops urgently.

6.5.9 Fault_reaction_option_code

When an error is occurred, fault_reation_option_code determines how to stop.

Index	605E h
Name	fault_reaction_option_code
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	NO
Units	
Value Range	0

Default Value 0

Value	Description
0	Shut down the motor excitation signal. Motor is freely rotatable.

6.6 Control Mode

ProNet/EDS/ETS currently supports 5 control modes in CANopen DSP402:

- HOMING MODE
- PROFILE VELOCITY MODE
- PROFILE TORQUE MODE
- PROFILE POSITION MODE
- INTERPOLATED POSITION MODE

Relevant parameter of control mode

Index	Object	Name	Туре	Attr.
6060 н	VAR	modes_of_operation	INT8	RW
6061 h	VAR	modes_of_operation_display	INT8	RO

Modes_of_operation

Drive control mode will be determined by parameters of modes_of_operation.

Index	6060 h
Name	modes_of_operation
Object Code	VAR
Data Type	INT8
Access	RW
PDO Mapping	YES
Units	
Value Range	1,3,4,6,7
Default Value	1

Value	Description
1	PROFILE POSITION MODE
3	PROFILE VELOCITY MODE
4	PROFILE TORQUE MODE

Value	Description
6	HOMING MODE
7	INTERPOLATION MODE

Modes_of_operation_display

Drive current control mode could be read from parameters in modes of operation display.

Index	6061 h
Name	modes_of_operation_display
Object Code	VAR
Data Type	INT8
Access	RO
PDO Mapping	YES
Units	
Value Range	1,3,4,6,7
Default Value	1

[Note] The current control mode could be only known from parameters in modes_of_operation_display.

6.7 HOMING MODE

Servo drive currently supports multiple homing mode, and users could choose the suitable homing mode.

The user can determine the way of homing, and its velocity and acceleration. After the servo controller has found its reference, the current position is displayed as the value set by home offset (607C h).

6.7.1 Control word of homing mode

15 ~ 9	8	7 ~ 5	4	3 ~ 0
*	Halt	*	home_operation_start	*

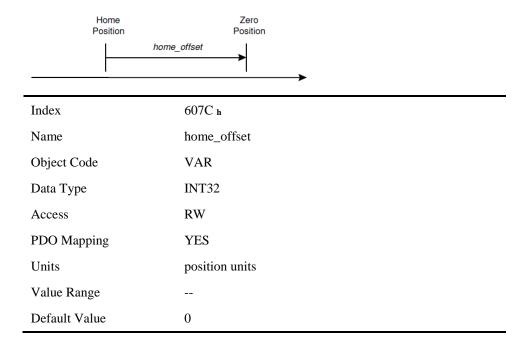
^{*:} Refer to previous chapters

Name	Value	Description		
Homing	0	Homing mode inactive		
operation start	0 → 1	Start homing mode		
	1	Homing mode active		
	1 → 0	Interrupt homing mode		
Halt	0	Execute the instruction of bit 4		
	1	Stop axle with homing acceleration		

6.7.2 Status word of homing mode

15 ~ 14	13	12	11	10	9 ~ 0
*	homing_error	homing_attained	*	target_reached	*

^{*:} Refer to previous chapters


Name	Value	Description		
Target	0	Halt = 0: Home position not reached		
reached		Halt = 1: Axle decelerates		
	1	Halt = 0: Home position reached		
		Halt = 1: Axle has velocity 0		
Homing	0	Homing mode not yet completed		
attained	1	Homing mode carried out successfully		
		No homing error		
error	1	Homing error occurred;		
		Homing mode carried out not successfully;		
		The error cause is found by reading the error code		

6.7.3 Related Parameters of homing mode

Index	Object	Name	Туре	Attr.
607C _h	VAR	home_offset	INT32	RW
6098 н	VAR	homing_method	INT8	RW
6099 h	ARRAY	homing_speeds	UINT32	RW
609A _h	VAR	homing_acceleration	INT32	RW

home_offset

The parameter home offset determines the distance between the reference position and the zero position.

homing_method

4 kinds of signals can be used as the homing signal: positive limit switch, negative limit switch, reference switch and C pulse.

Index 6098 h $homing_method$ Name Object Code VAR Data Type INT8 Access RW**PDO Mapping** YES Units Value Range 1-14, 17-22, 23-30, 33-35 Default Value 1

List of Homing Modes

Mode	Direction	Target	Reference Position	DS402
1	Negative	NOT	C pulse	1
2	Positive	POT	C pulse	2
3	Negative	Reference switch	C pulse	3
4	Positive	Reference switch	C pulse	4
5	Negative	Reference switch	C pulse	5
6	Positive	Reference switch	C pulse	6
7	Positive	Reference switch	C pulse	7
8	Positive	Reference switch	C pulse	8
9	Positive	Reference switch	C pulse	9
10	Positive	Reference switch	C pulse	10
11	Negative	Reference switch	C pulse	11
12	Negative	Reference switch	C pulse	12
13	Negative	Reference switch	C pulse	13
14	Negative	Reference switch	C pulse	14
17	Negative	NOT	NOT	17
18	Positive	POT	POT	18
19	Negative	Reference switch	Reference switch	19
20	Positive	Reference switch	Reference switch	20
21	Negative	Reference switch	Reference switch	21
22	Positive	Reference switch	Reference switch	22
23	Positive	Reference switch	Reference switch	23
24	Positive	Reference switch	Reference switch	24
25	Positive	Reference switch	Reference switch	25

Mode	Direction	Target	Reference Position	DS402
26	Positive	Reference switch	Reference switch	26
27	Negative	Reference switch	Reference switch	27
28	Negative	Reference switch	Reference switch	28
29	Negative	Reference switch	Reference switch	29
30	Negative	Reference switch	Reference switch	30
33	Negative	Current position	C pulse	33
34	Positive	Current position	C pulse	34
35		Current position	Current position	35
-4	Positive	Target torque	C pulse	Defined by manufacturer
-3	Negative	Target torque	C pulse	Defined by manufacturer
-2	Positive	Target torque	Target torque	Defined by manufacturer
-1	Negative	Target torque	Target torque	Defined by manufacturer

homing speeds

Two kinds of speed are required to find reference point, speed during search for switch and speed during search for zero.

Index	6099 h
Name	homing_speeds
Object Code	ARRAY
No. of Elements	2
Data Type	INT32

Sub-Index	01 h
Name	speed_during_search_for_switch
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	5000

Sub-Index	02 h
Name	speed_during_search_for_zero
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	100

Pn207 (stopper torque)

The locked-rotor torque value used by the homing modes -4, -3, -2 and -1. When the machine hits the stop and reaches the torque value set by Pn207 and keeps the filter time set by Pn208, find the C pulse in the reverse direction or make the current position for the origin.

Index	3049 _h
Name	Pn207 (stopper torque)
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	NO
Units	1% rated torque
Value Range	0-200
Default Value	20

Pn208 (blocking time)

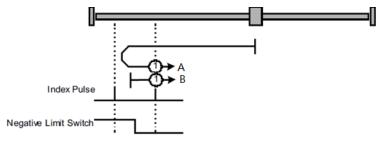
The locked-rotor torque value used by the homing modes -4, -3, -2 and -1. When the machine hits the stop and reaches the torque value set by Pn207 and keeps the filter time set by Pn208, find the C pulse in the reverse direction or make the current position for the origin.

$304A_h$
Pn208 (Blocking time)
VAR
UINT16
RW
NO
0.125ms
0-10000

Default Value 100

homing_acceleration

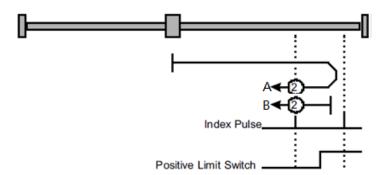
The objects homing acceleration determine the acceleration and deceleration during homing.


Index	609A _h
Name	homing_acceleration
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	acceleration units
Value Range	
Default Value	100000

6.7.4 Homing Methods

Method 1: Using C pulse and negative limit switch

A: When homing mode is enabled, if negative limit switch N-OT=0, the drive first moves quickly to the negative direction and stops until it reaches the rising edge of negative limit switch (N-OT). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of negative limit switch (N-OT).


B: When homing mode is enabled, if negative limit switch N-OT=1, the drive first moves slowly to the positive direction, and stops until reaches the 1st C pulse of falling edge of negative limit switch (N-OT).

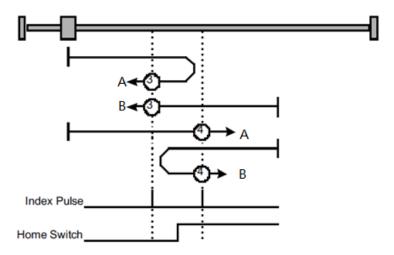
Method 2: Using C pulse and positive limit switch

A: When homing mode is enabled, if positive limit switch P-OT=0, the drive first moves quickly to the positive direction, and stops until it reaches the rising edge of positive limit switch (P-OT). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of positive limit switch (P-OT).

B: When homing mode is enabled, if positive limit switch P-OT=1, the drive first moves slowly to the negative direction, and stops until reaches the 1st C pulse of falling edge of positive limit switch (P-OT).

Methods 3 and 4: Using C pulse and positive reference switch

• Method 3


A: When homing mode is enabled, if positive reference switch H-S=0, the drive first moves quickly to the positive direction, and stops until it reaches the 1st C pulse of rising edge of positive reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of positive reference switch (H-S).

B: When homing mode is enabled, if positive reference switch H-S =1, the drive first moves slowly to the negative direction, and stops until reaches the 1st C pulse of falling edge of positive reference switch (H-S).

Method 4

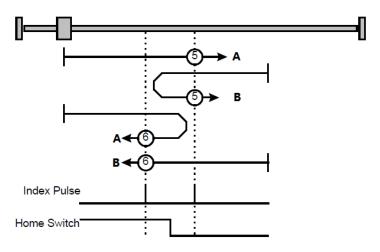
A: When homing mode is enabled, if positive reference switch H-S =0, the drive first moves slowly to the positive direction, and stops until reaches the 1st C pulse of falling edge of positive reference switch (H-S).

B: When homing mode is enabled, if positive reference switch H-S=1, the drive first moves quickly to the negative direction, and stops until it reaches the 1st C pulse of falling edge of positive reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of rising edge of positive reference switch (H-S).

Methods 5 and 6: Using C pulse and negative reference switch

• Method 5

A: When homing mode is enabled, if negative reference switch H-S=1, the drive first moves slowly to the positive direction, and stops until it reaches the 1st C pulse of falling edge of negative reference switch (H-S).


B: When homing mode is enabled, if positive reference switch H-S =0, the drive first moves quickly to the negative direction, and stops until reaches the 1st C pulse of rising edge of negative reference switch

(H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of negative reference switch (H-S).

Method 6

A: When homing mode is enabled, if negative reference switch H-S =1, the drive first moves quickly to the positive direction, and stops until reaches the 1st C pulse of falling edge of negative reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches the 1st C pulse of falling edge of negative reference switch (H-S).

B: When homing mode is enabled, if negative reference switch H-S=0, the drive first moves slowly to the negative direction, and stops until it reaches the 1st C pulse of rising edge of negative reference switch (H-S).

Methods 7~14: Using reference switch, limit switch and C pulse

Methods 7~14 use the reference switch which is only active over parts of the travel.

• When the positive limit switch (POT) is used for homing, the initial direction of methods 7~10 is the positive direction

- Method 7

A: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly into the positive direction, but not reaches positive limit switch, and stops until it reaches the rising edge of reference switch (H-S). Afterwards the drive slowly returns, and stops until reaches 1st C pulse of the falling edge of reference switch (H-S).

B: When homing mode is enabled, if reference switch H-S =1, the drive first moves slowly into the negative direction, and stops until reaches 1st C pulse of the falling edge of reference switch (H-S).

C: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly into the positive direction, reaches positive limit switch, and moves quickly to the negative direction. When it reaches the rising edge of the reference switch (H-S), it starts to decelerate and continues to run in the negative direction, and stops when it reaches the 1st C pulse after the falling edge of the reference switch (H-S).

- Method 8

A: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly into the positive direction, but not reaches positive limit switch, and slows down until it reaches the rising edge of reference switch (H-S). Afterwards it moves to positive direction, and stops until finds the 1st C pulse.

B: When homing mode is enabled, if reference switch H-S =1, the drive first moves slowly to the negative direction, and turn around until reaches the falling edge of reference switch (H-S). Then moves slowly into the positive direction, and stops when it reaches the 1st C pulse after the rising edge of the reference switch (H-S).

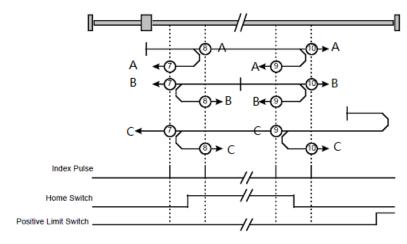
C: When homing mode is enabled, if reference switch H-S=0, the drive first moves quickly to the positive direction, and reaches positive limit switch; then it moves quickly into the negative

direction, and slows down after reaching the rising edge of reference switch (H-S). Afterwards it moves to negative direction, and returns to positive direction slowly. It stops until reaches the 1st C pulse of the rising edge of reference switch (H-S).

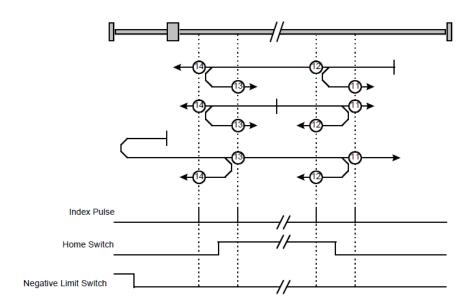
- Method 9

A: When homing mode is enabled, if reference switch H-S=0, the drive first moves in the positive direction quickly, but not reaches the positive limit switch, and it slowly down after reaching the rising edge of the reference switch (HS), and continues to run slowly in the positive direction. Afterwards it slows down and stops after reaching the falling edge of the reference switch (HS). Then the drive returns slowly, and stops when it reaches the 1st C pulse behind the rising edge of the reference switch (HS).

B: When homing mode is enabled, if reference switch H-S =1, the drive runs slowly in the positive direction directly, reverses after reaching the falling edge of the reference switch (H-S). Afterwards it moves slowly in the negative direction, and stops after it reaches the 1st C pulse of the rising edge of the reference switch (H-S).

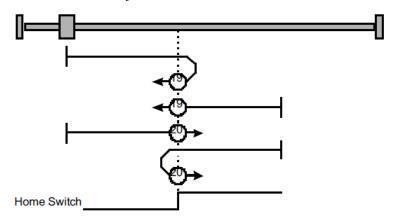

C: When homing mode is enabled, if reference switch H-S=0, the drive moves in the positive direction first, and when it reaches the positive limit switch, the drive automatically runs in the reverse direction at a high speed. After reaching the rising edge of the reference switch (HS), it slows down and continues to move slowly in the negative direction, and stops until the 1st C pulse is found.

Method 10


A: When homing mode is enabled, if reference switch H-S=0, the drive first moves in the positive direction quickly, but reaches the positive limit switch, and it slows down when reaching the rising edge of the reference switch (HS), and continues to run slowly in the positive direction. Afterwards it continues to run in the positive direction after reaching the falling edge of the reference switch (HS), and stops until the 1st C pulse is found.

B: When homing mode is enabled, if reference switch H-S =1, the drive runs slowly in the positive direction, and stops at the 1st C pulse behind the falling edge of the reference switch (H-S).

C: When homing mode is enabled, if reference switch H-S=0, the drive moves in the positive direction first, and when it reaches the positive limit switch, the drive automatically runs in the reverse direction at a high speed. After reaching the rising edge of the reference switch (HS), it slows down and stops, and then returns slowly, and continues to move slowly in the positive direction. It stops after reaching the 1st C pulse of the falling edge of the reference switch (H-S.



• When the negative limit switch (NOT) is used for homing, the method 11~14 is almost same as method 7~10, and the drive first moves to the negative direction.

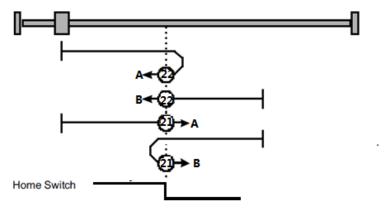
Methods 17~20, 23~30: Not using C pulse

Homing methods 17~30 are similar to methods 1~4, and 7~14, but the target homing position is not relied on C pulse any more but on the change of limit switch or reference point. For example, as below, method 19 and method 20 are just similar to method 3 and method 4.

Methods 21, 22 Homing by using reference switch

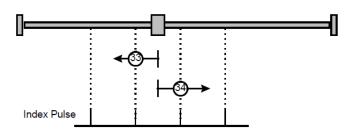
These two homing methods are similar to 5 and 6, except that the C pulse is not used for target zero position, but depends on the change of the reference switch.

• Method 21

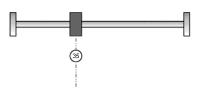

A: When homing mode is enabled, if reference switch H-S =1, the drive runs slowly in the positive direction, and stops when it reaches the falling edge of the reference switch (H-S).

B: When homing mode is enabled, if reference switch H-S=0, the drive first moves in the negative direction quickly, slows down and stops when it reaches the rising edge of the reference switch (HS), then the drive returns slowly and runs in the positive direction. It stops when reaching the falling edge of the reference switch (HS).

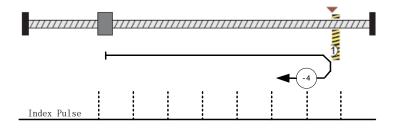
• Method 22


A: When homing mode is enabled, if reference switch H-S =1, the drive first moves in the positive direction quickly, slows down and stops when it reaches the falling edge of the reference switch (HS). Afterwards it returns slowly, runs in the negative direction, and stops when reaching the rising edge of the reference switch (HS).

B: When homing mode is enabled, if reference switch H-S=0, the drive runs slowly in the negative direction, and stops when reaching the rising edge of the reference switch (H-S).


Methods 33 and 34: Homing by using C pulse

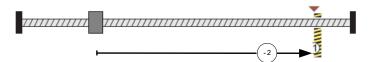
- Method 33: The drive moves slowly into the negative direction, and stops when reaching the 1st C pulse.
- Method 34: The drive moves slowly into the positive direction, and stops when reaching the 1st C pulse.


Method 35: Homing on the current position

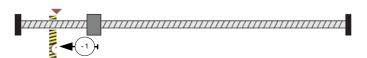
In this method, the current position shall be taken to be the home position.

Method-4: Movement in positive direction, hitting an end and reversing to travel, the target homing position is the C pulse

In this method, the motor moves in positive direction. When it hits an end so that the torque set in Pn207 is reached for the blocking time set in Pn208, movement in the opposite direction, and the target homing position is the first C pulse.

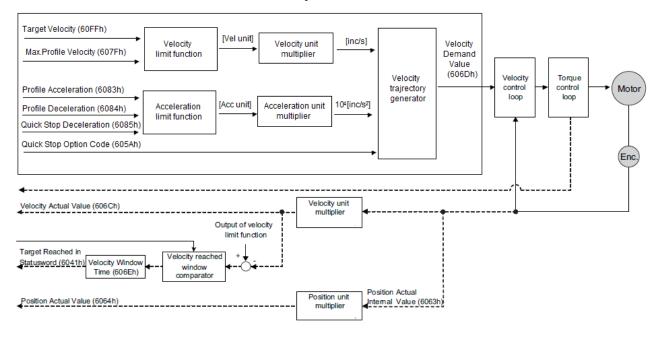

Movement in negative direction, hitting an end and reversing to travel, the target homing position is the C pulse

In this method, the motor moves in negative direction. When it hits an end so that the locked-rotor torque set in Pn207 is reached for the blocking time set in Pn208, movement in the opposite direction, and the target homing position is the first C pulse.


Method -2: Movement in positive direction, hitting an end, makes the current position for the homing point

In this method, the motor moves in positive direction. When the drive hits an end so that the locked-rotor torque set in Pn207 is reached for the blocking time set in Pn208, and makes the current position for the origin.

Method -1: Movement in negative direction, hitting an end, makes the current position for the homing point


In this method, the motor moves in negative direction. When the drive hits an end so that the locked-rotor torque set in Pn207 is reached for the blocking time set in Pn208, and makes the current position for the origin.

Notes: When starting homing on homing method about input signal, the rotation direction of servo motor is associated with the initial status of the limit switch. Changing the initial status by inverse input, if it is necessary.

6.8 PROFILE VELOCITY MODE

6.8.1 Flow Chart of Profile Velocaity Mode

6.8.2 Control Word

15 ~ 9	8	7 ~ 4	3 ~ 0
*	Halt	*	*

^{*:} Refer to previous chapters

Name	Value	Description
Halt	0	Execute the motion
	1	Stop axle

6.8.3 Status Word

15 ~ 14	13	12	11	10	9 ~ 0
*	MaxSlippageError	Speed	*	Target reached	*

^{*:} Refer to previous chapters

Name	Value	Description
Target	0	Halt = 0: Target velocity not (yet) reached
reached		Halt = 1: Axle decelerates
	1	Halt = 0: Target velocity reached
		Halt = 1: Axle has velocity 0
Speed	0	Speed is not equal 0
	1	Speed is equal 0
Max slippage error	0	Maximum slippage not reached
	1	Maximum slippage reached

6.8.4 Related Parameters

Index	Object	Name	Туре	Attr.
6069 h	VAR	velocity_sensor_actual_value	INT32	RO
606В н	VAR	velocity_demand_value	INT32	RO
606C h	VAR	velocity_actual_value	INT32	RO
606D _h	VAR	velocity_window	UINT16	RW
606E h	VAR	velocity_window_time	UINT16	RW
606F h	VAR	velocity_threshold	UINT16	RW
6070 h	VAR	velocity_threshold_time	UINT16	RW
607F h	VAR	Max profile velocity	UINT32	RW
60FF h	VAR	target_velocity	INT32	RW

velocity_sensor_actual_value

The master could read velocity_sensor_actual_value to know the current velocity. The parameter's unit is internal speed unit.

Index	6069 h		
Name	velocity_sensor_actual_value		
Object Code	VAR		
Data Type	INT32		
Access	RW		
PDO Mapping	YES		
Units	0.1rmps (1R/10min)		
Value Range			
Default Value			

velocity_demand_value

The master can read velocity_demand_value to know the current reference speed value of the servo drive. The unit of this parameter is user's velocity unit.

Index	606B h	
Name	velocity_demand_value	
Object Code	VAR	
Data Type	INT32	
Access	RO	
PDO Mapping	YES	
Units	speed units	

Value Range	
Default Value	

velocity_actual_value

The master can read velocity_actual _value to know the current velocity of the servo motor. The unit of this parameter is user's velocity unit.

Index	606C h	
Name	velocity_actual_value	
Object Code	VAR	
Data Type	INT32	
Access	RO	
PDO Mapping	YES	
Units	speed units	
Value Range		
Default Value		

velocity_window

The difference between velocity_actual_value (606C h) and target_velocity (60FF h) is defined as actual velocity error window. If the actual velocity error window is always smaller than velocity_window (606D h) within the time set by velocity_window_time (606E h), then bit 10 of status word (target_reached) will be set to indicate that the set velocity has been reached.

Index	606D _h
Name	velocity_window
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	20 R/10min

velocity_window_time

Velocity window comparator is composed of velocity_window_time and velocity_window.

Index	606E h	
Name	velocity window time	

Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	ms
Value Range	
Default Value	0

velocity_threshold

Velocity_threshold indicates a range close to zero speed in order to define if the servo motor has already stopped.

Index	606F h
Name	velocity_threshold
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	50

velocity_threshold_time

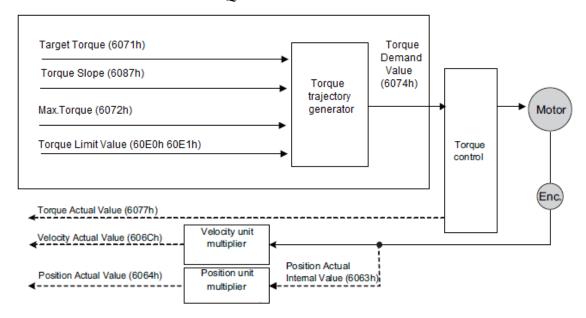
Velocity_threshold_time is used to set the shortest time when servo motor's speed is under velocity threshold. The unit is: ms. When the time that servo motor's speed is lower than the threshold is more than velocity_threshold_time, status word bit 12 (speed is zero) will be set as 1.

Index	6070 h	
Name	velocity_threshold_time	
Object Code	VAR	
Data Type	UINT16	
Access	RW	
PDO Mapping	YES	
Units	ms	
Value Range		
Default Value	0	

Max profile velocity

The object max profile velocity is the speed that the motor cannot exceed. Its unit is the unit of customer's speed.

Index	607F h
Name	Max profile velocity
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	0


target_velocity

target_velocity is the reference speed.

Index	60FF h
Name	target_velocity
Object Code	VAR
Data Type	INT32
Access	RW
PDO Mapping	YES
Units	speed units
Value Range	
Default Value	0

6.9 PROFILE TORQUE MODE

6.9.1 Flow Chart of PROFILE TORQUE MODE

6.9.2 Control Word

15 ~ 9	8	7 ~ 4	3 ~ 0
*	Halt	*	*

^{*:} refer to previous chapters

bit	Value	Definition
0	0	The motion shall be executed 8 or continued
0	1	Axis shall be stopped according to the halt option code (605Dh)

6.9.3 Status Word

15 ~ 14	13	12	11	10	9 ~ 0
*	*	*	*	Target reached	*

^{*:} refer to previous chapters

bit	Value	Definition	
10	0	Target torque not reached	
	1	Target torque reached	

6.9.4 Related Parameters

Index	Object	Name	Туре	Attr.
6071 h	VAR	target_torque	INT16	RW
6072 h	VAR	Max torque	UINT16	RW
6074 h	VAR	torque_demand	INT16	RO
6077 _h	VAR	torque_actual_value	INT16	RO
6087 h	VAR	torque_slope	UINT32	RW

target_torque

The master can send a torque reference to the drive through target_torque, the unit is 0.1% of the rated motor torque, which is indicated on the motor nameplate.

Index	6071 h
Name	target_torque
Object Code	VAR
Data Type	INT16
Access	RW
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	

Max torque

Max torque, the maximum torque allowed by the motor during operation, the unit is 0.1% of the rated torque of the motor.

Index	6072 _h
Name	Max torque
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	0

torque_demand

The output of the torque reference generator. The drive generates the command slope according to the value of target torque and torque slope.

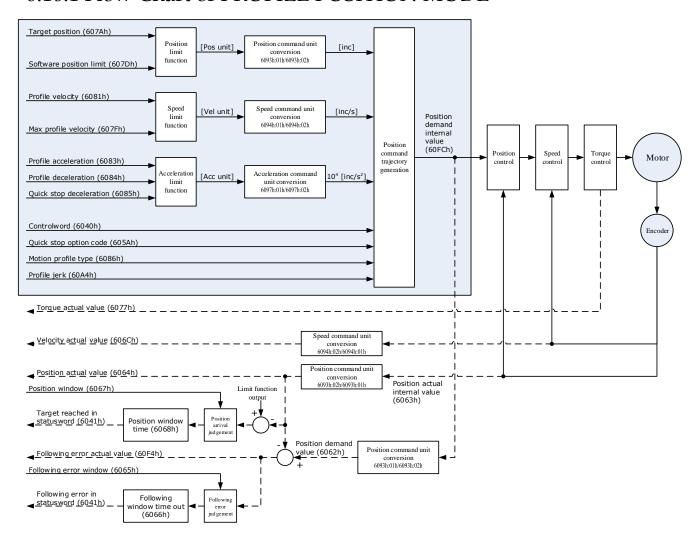
Index	6074 ь
Name	torque_demand
Object Code	VAR
Data Type	INT16
Access	RO
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	

torque_actual_value

The master can get the current output torque of the motor by reading torque_actual_value. Its unit is 0.1% of rated torque of the motor.

Index	6077 h
Name	torque_actual_value
Object Code	VAR
Data Type	INT16
Access	RO
PDO Mapping	YES
Units	0.1% rated torque
Value Range	
Default Value	

torque_slope


The master can set the change speed of torque reference via torque_slope. Its unit is 0.1% of rated torque per second.

Index	6087 h
Name	torque_slope
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	0.1% rated torque per second

Value Range -Default Value --

6.10 PROFILE POSITION MODE

6.10.1 Flow Chart of PROFILE POSITION MODE

6.10.2 Control Word

15 ~ 9	8	7	6	5	4	3 ~ 0
*	Halt	*	abs / rel	change set immediately	New set- point	*

^{*:} refer to previous chapters

Name	Value	Description
New	0	Does not assume target position
set-point	1	Assume target position
Change set	0	Finish the actual positioning and then start the next positioning
immediately	1	Interrupt the actual positioning and start the next positioning
abs / rel	0	Target position is an absolute value
	1	Target position is a relative value
Halt	0	Execute positioning
	1	Stop axle with profile deceleration (if not supported with profile acceleration)

6.10.3 Staus Word

15	~ 14	13	12	11	10	9 ~ 0
*		Following error	Set_point acknowledge	*	Target reached	*

^{*:} refer to previous chapters

Name	Value	Description
Target	0	Halt = 0: Target position not reached
reached		Halt = 1: Axle decelerates
	1	Halt = 0: Target position reached
		Halt = 1: Velocity of axle is 0
Set-point	0	Trajectory generator has not assumed the positioning values (yet)
acknowledge	1	Trajectory generator has assumed the positioning values
Following	0	No following error
error	1	Following error

6.10.4 Related Parameters

Index	Object	Name	Туре	Attr.
607А н	VAR	target_position	INT32	RW
6081 н	VAR	profile_velocity	UINT32	RW
6082 h	VAR	end_velocity	UINT32	RW
6083 h	VAR	profile_acceleration	UINT32	RW
6084 н	VAR	profile_deceleration	UINT32	RW
6085 h	VAR	quick_stop_deceleration	UINT32	RW
6086 h	VAR	motion_profile_type	INT16	RW
60A4-01 _h	VAR	Profile_jerk1	UINT32	RW

target_position

The object target_position is the given target position, which (target_position) is interpreted either as an absolute or relative position. This depends on bit 6 (relative) of the object control word.

Index	607A h	
Name	target_ position	
Object Code	VAR	
Data Type	INT32	
Access	RW	
PDO Mapping	YES	
Units	position units	
Value Range		
Default Value	0	

profile_velocity

The object profile_velocity specifies the speed that usually is reached during a positioning motion at the end of the acceleration ramp.

Index	6081 h	
Name	profile_velocity	
Object Code	VAR	
Data Type	UINT32	
Access	RW	
PDO Mapping	YES	
Units	speed units	
Value Range		
Default Value	0	

end_velocity

 $End_velocity$ is the speed when servo motor reaches the target_position. Normally we set this value as 0 in order to stop the servo motor when the servo motor reaches the requested position. But in continuous multiple position, this value could be set as a non-zero value.

Index	6082 h	
Name	end_velocity	
Object Code	VAR	
Data Type	UINT32	
Access	RW	
PDO Mapping	YES	
Units	speed units	
Value Range		
Default Value	0	

profile_acceleration

Profile_acceleration is the acceleration speed before reaching the target position.

Index	6083 h	
Name	profile_acceleration	
Object Code	VAR	
Data Type	UINT32	
Access	RW	
PDO Mapping	YES	
Units	acceleration units	
Value Range		
Default Value	100000 R/10min/s	

profile_deceleration

Profile_deceleration is the deceleration speed before reaching the target position.

Index	6084 h	
Name	profile_deceleration	
Object Code	VAR	
Data Type	UINT32	
Access	RW	
PDO Mapping	YES	
Units	acceleration units	
Value Range		
Default Value	100000 R/10min/s	

quick_stop_deceleration

 $Quick_stop_deceleration$ is the deceleration speed in $Quick_stop$.

Index	6085 h
Name	quick_stop_deceleration
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	acceleration units

Value Range	
Default Value	200000 R/10min/s

motion_profile_type

Motion_profile_type is used to select the motion curve. Now we only support trapezoid speed curve (set as 0) and S speed curve (set as 2).

Index	6086 н	
Name	motion_profile_type	
Object Code	VAR	
Data Type	INT16	
Access	RW	
PDO Mapping	YES	
Units		
Value Range	0or2	
Default Value	0	

profile_jerk1

Profile_jerk1 is used to set the jerk of speed profile. The value is smaller, the speed changing is more smooth.

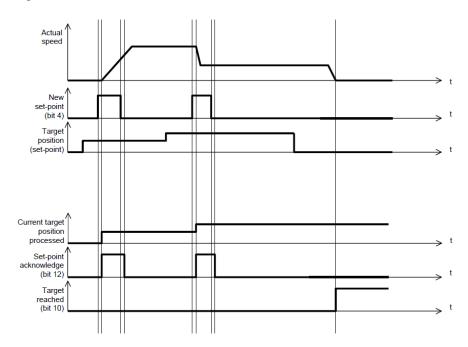
Index	60A4 -01 _h
Name	profile_jerk1
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Units	jerk units
Value Range	1-20
Default Value	5pulse/(s*100μs*100μs)

6.10.5 Function Description

When the speed profile is trapezia (motion_profile_type=0), two different ways to apply target positions are supported:

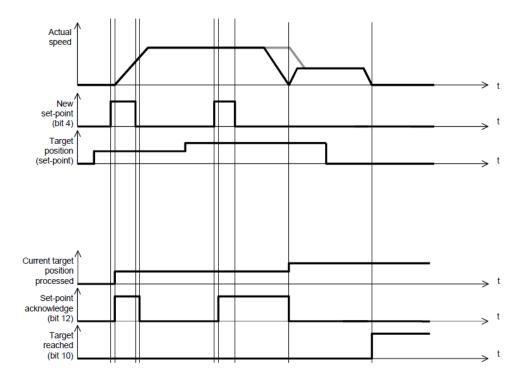
Single-step

When the current position is being executed, the controller resends a new position, and at the same time gives a rising edge to bit4 of the controlword, the drive then will re-plan and execute based on the latest position and speed.

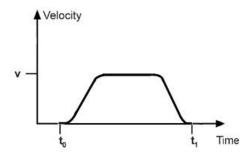

Continuous-step

After the motor reaches the target position, the drive informs the host of "target position reached", and then gets a new target position and starts motion. Before getting a new target position, the motor speed is usually zero.

Both of the above two methods can be changed in real time by bit4 and bit5 of the controlword and bit12 (set_point_acknowledge) of the status word statusword. The position control being executed can be interrupted through the handshake mechanism, and the target position can be reset by using these few words.

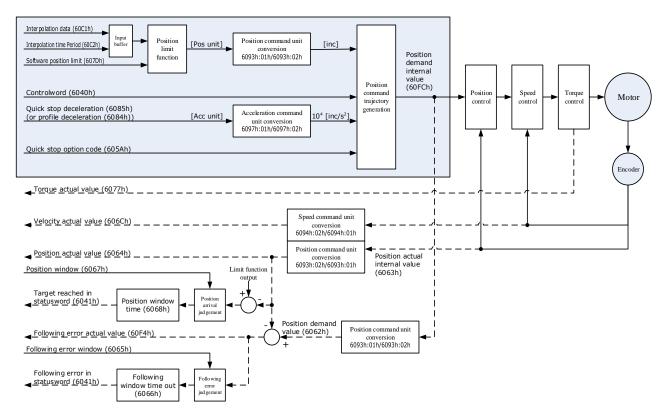

Single-step setting procedure

- 1. Set the NMT status into Operational and set the control mode parameter (6060 h) as 1.
- 2. According to the actual demand, we could set the target position (target position: 607A h) and so on.
- 3. We need set bit4 (new_set_point) of the control word as 1, bit 5 (change_set_immediately) as 0, bit 6 (absolute/comparative) should be determined by whether the reference target position is an absolute value or a comparative value.
- 4. We use bit12 (set_point_acknowledge) of the status word to configure the servo drive acknowledge mechanism. And then we start to operate position control.
- 5. After reaching the target position, servo drive will need to respond through bit 10 (target_reached) of the status word. And then servo drive will follow the program to keep moving or accept new target position.



Continuous-step setting procedure

- 6. At first, set NMT as Operational and control mode parameter (6060 h) as 1.
- 7. According to actual demand, set the first target position (target_position: 607A h), target speed, acceleration/deceleration and other Related Parameters.
- 8. Set bit 4 (new_set_point) of control word as 1. Set bit 5 (change_set_immediately) as 0. Set bit6 (absolute/comparative) according to the type of object position.
- 9. Set bit 12 (set_point_acknowledge) of the status word and then start to operate position control.
- 10. Set the second target position (target_position: 607A h), target speed, acceleration/deceleration speed.
- 11. Set bit4 (new_set_point) as 1, bit 5 (change_set_immediately) as 0. Set Bit6 (absolute/comparative) according to the target position type.
- 12. After reaching the first target position, the servo drive will not stop and keep moving toward the second target position. After reaching the second target position, the servo drive will respond through status word bit 10 (target_reached). Then the servo motor will follow the program to keep moving or accept new target position.



When the speed profile is S (motion_profile_type=2), only **Continuous-step setting** is available. 6083h (profile_acceleration) limits max acceleration, and 6081h (profile_velocity) limits max speed. 60A4-01 h (VAR Profile_jerk1) limits the jerk. Only symmetrical S linear is available currently.

6.11 INTERPLATION POSITION MODE

6.11.1 Flow Chart of INTERPLATION POSITION MODE

6.11.2 Control Word

15 ~ 9	8	7	6	5	4	3 ~ 0
*	Halt	*	*	*	Enable ip mode	*

^{*:} refer to previous chapters

Name	Value	Description
Enable ip	0	Interpolated position mode inactive
mode	1	Interpolated position mode active
Halt	0	Execute the instruction of bit 4
	1	Stop axle

6.11.3 Status Word

15 ~ 14	13	12	11	10	9~0
*	*	ip mode active	*	Target reached	*

^{*:} refer to previous chapters

Name	Value	Description
Target	0	Halt = 0: Position not (yet) reached
reached		Halt = 1: Axle decelerates
	1	Halt = 0: Position reached
		Halt = 1: Axle has velocity 0
ip mode	0	Interpolated position mode inactive
active	1	Interpolated position mode active

6.11.4 Related Parameters

Index	Object	Name	Туре	Attr.
60C0 h	VAR	Interpolation sub mode select	INT16	RW
60C1 h	ARRAY	Interpolation data record	INT32	RW
60C2 h	RECORD	Interpolation time period		RW

Interpolation sub mode select

Interpolation sub mode select is used to select the method of interpolation under IP control. **Only the linear interpolation is available.**

Index	60C0h	
Name	Interpolation sub mode select	
Object Code	VAR	
Data Type	INT16	
Access	RW	
PDO Mapping	NO	
Value Range	0	
Default Value	0	
Comment	0: Linear interpolation	

Interpolation data record

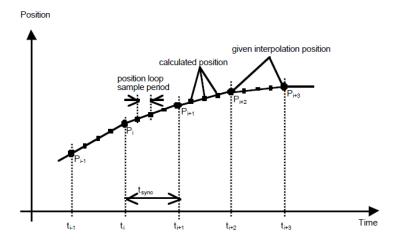
Interpolation data record is used to reserve interpolation potion data. Our servo drive's interpolation command only uses the first data whose subindex is 1.

Index	60C1h
Subindex	0
Object Code	ARRAY
Data Type	INT32
Access	RO
PDO Mapping	YES

Value Range	INT8
Default Value	2
Comment	number of entries
Index	60C1h
Subindex	1
Object Code	ARRAY
Data Type	INT32
Access	RW
PDO Mapping	YES
Value Range	INT32
Default Value	0
Comment	the first parameter of ip function
Index	60C1h
Subindex	2
Object Code	ARRAY
Data Type	INT32
Access	RW
PDO Mapping	YES
Value Range	INT32
Default Value	0
Comment	The second parameter of ip function

Interpolation time period

Interpolation time period is used to reserve the time data of interpolation position.


·		
Index	60C2h	
Object Code	RECORD	
Data Type	Interpolation time period record (0080h)	
Category	Conditional: mandatory if ip, csp, csv or cst mode is supported	
Index	60C2h	
Subindex	0	

Object Code	RECORD	
Data Type	UINT8	
Access	C	
PDO Mapping	NO	
Value Range	02	
Default Value	02	
Comment	Highest sub-index supported	
·		
Index	60C2h	
Index Subindex	60C2h 01	
Subindex	01	
Subindex Object Code	01 RECORD	
Subindex Object Code Data Type	01 RECORD UINT8	
Subindex Object Code Data Type Access	01 RECORD UINT8 RW	
Subindex Object Code Data Type Access PDO Mapping	01 RECORD UINT8 RW YES	

Index	60C2h
Subindex	02
Object Code	RECORD
Data Type	INT8
Access	RW
PDO Mapping	YES
Value Range	-128 to +63
Default Value	-3
Comment	Interpolation time index

6.11.5 Functional Description

Interpolation principle of IP mode:

Pi: interpolation position set by the host; tsync: sync period

Explanations

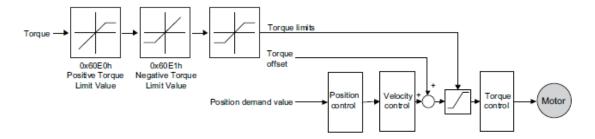
- 1. In our servo drive, there is no buffer for position data so in IP control, all the position data needs to be updated by the host controller. To achieve synchronization, host controllers need to send the updated position at first and then use SYNC signal to make all the servo drive receive the synchronization information. After receiving the synchronization information, servo drive will synchronize its internal clock. Please notice that the sync period should be not bigger than interpolation cycle period in order to keep the updating of interpolation data.
- 2. In IP mode, the host controller should at first set the servo's PDO receiving method into sync mode (use SYNC frame to receive and send synchronization information). Since the SYNC is broad casted, each servo drive will only update PDO data after receiving this signal.
- 3. Before SYNC is sent, host controller should send position data Xi and Controlword to the servo drive.
- 4. When there is data delay, servo drive will use the last sync date to do interpolation.
- 5. After one IP period is ended, if there is no further data updating, interpolation cycle overtime alarm (A 69) will happen. Then servo drive will stop.

Recommended RPDO configuration:

• When you use only one RPDO

Control subindex:	word (0h)	(index:	6040h,	32bit position reference (index:60C1h,subindex:01h)
When you use two RPDOs				

• When you use two Ki Dos


Control word (index:6040h,subindex:0h) 32bit position reference (index:60C1h,subindex:01h)

Configuration process:

- 1. Configure PDO. (RPDO1 is configured as index: 6040h, subindex: 0h, RPDO2 is configured as index 60c1h, subindex: 1h)
- 2. Set interpolation cycle (60C2-01h), in micro second (ms).
- 3. Set PDO as Sync mode (Set the object dictionary (index: 1400h, subindex: 02h) as 1. Set object dictionary (index: 1401h, subindex: 02h) as 1). If sending PDO needs to be in sync mode as well, we need to set object dictionary (index: 1800h, subindex: 02h) as 1 and (index:1801h,subindex:02h) as 1 as well.
- 4. Set the control mode to PI mode (set the object dictionary (index: 6060h, subindex:0h) to 7);
- 5. NMT starts node.

6.12 Torque Limit Function

In CANOPEN bus mode, torque limit function is restricted by 0x60E0 and 0x60E1 as below.

PosTorLimit(0x60E0)

PosTorLimit is the positive torque limit, unit: 0.1% rated torque

Index	60E0h
Name	PosTorLimit
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Value Range	0-3000
Default Value	3000

NegTorLimit(0x60E1)

NegTorLimit is the negative torque limit, unit: 0.1% rated torque

Index	60E1h
Name	NegTorLimit
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Value Range	0-3000
Default Value	3000

6.13 DIGITAL INPUT /OUTPUT

60FE (Physical outputs)

In some cases, some switches (i.e. the origin signal and limit signal) are not sent to the servo drive directly, but sent by the host. You need to use the object 60FE-01h (Physical outputs) to transfer the relevant signals.

Index	60FE h
Name	Digital outputs
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32

Sub-Index	01 h
Name	Physical outputs
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Default Value	0

Sub-Index	02 ь
Name	Bit mask
Object Code	VAR
Data Type	UINT32
Access	RW
PDO Mapping	YES
Default Value	0

Bit17	Bit28	Bit29	Bit30	Bit31
reserved	Remote0	Remote1	Remote2	reserved

The bit28-bit30 bits of this object correspond only to the input port of CN1 respectively, and then you need to configure the corresponding function of the input port through Pn511 or invert it through 517.

60FD (Physical outputs)

Sometimes, the host controller may read the object 60FDh (Digital Inputs) to monitor the switching onoff inputs of the drive, which are defined as follows:

Name	Digital outputs
Object Code	Variable
Data Type	UINT32

Sub-Index	00 h
Name	Physical outputs
Object Code	VAR
Data Type	UINT32
Access	RO
PDO Mapping	YES
Default Value	0
	_

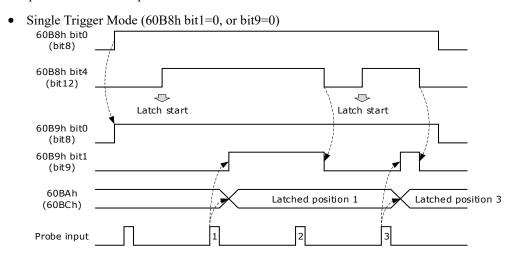
Bit0	Bit1	Bit2	Bit3-15	Bit16	Bit17	Bit18
negative limit switch	positive limit switch	home switch	reserved	CN1_in1	CN1_in2	CN1_in3
Bit19	Bit20	Bit21	Bit22	Bit23	Bit24-31	
CN1_in4	CN1_in5	CN1_in6	CN1_in7	CN1_in8	reserved	

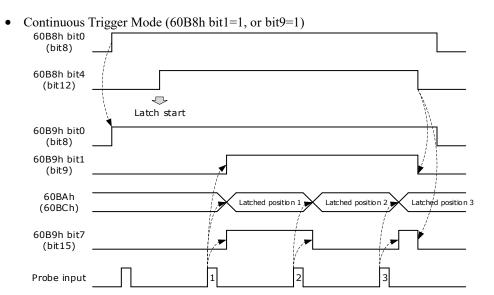
6.14 Functions of TouchProbe

You may use the following trigger events to latch the feedback motor position.

- TouchProbe input 1 (TP1) triggered
- TouchProbe input 2 (TP2) triggered
- Trigger by using C pulse signal

The latch function of two TouchProbes can be used at the same time:


- Latch control object: 60B8h (bit0 to bit7)
- Latch state object: 60B9h (bit0 to bit7)
- The locked position is always stored in the TouchProbe1 position value (60BAh and 60BBh).
- Trigger signal: C pulse signal or EXT1 signal of the encoder


The objects involved in this function are listed in table below:

Index 1	Sub- index	Name	Visit	Data Type	PDO Mapping	Default
60B8	00	Touch Probe Function	RW	UINT16	Yes	-
60B9	00	Touch Probe Status	RO	UINT16	Yes	_
60BA	00	TouchProbePos1PosValue	RO	INT32	Yes	_
60BB	00	TouchProbeNeg1PosValue	RO	INT32	Yes	_

Index 1	Sub- index	Name	Visit	Data Type	PDO Mapping	Default
60BC	00	TouchProbePos2PosValue	RO	INT32	Yes	-
60BD	00	TouchProbeNeg2PosValue	RO	INT32	Yes	_

Example of the execution process of Touch Probe:

60B8h: Touch Probe Function

The object is configured to the Touch Probe Function.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60B8	00	Touch Probe Function	RW	UINT16	-	0 to 0xFFFF	0

Each bit of Touch Probe Function (60B8h) is described as follows:

Bit	Value	Definition
0	0	Probe 1 not enabled
0	1	Probe 1 enabled
1	0	Single trigger, probe 1 is triggered only when the trigger signal is valid for the first time
	1	Continuous trigger, probe 1 is triggered every time the trigger signal is valid
2	0	External IO signal, used as probe 1 trigger signal
2	1	C pulse, used as the trigger signal of probe 1
3	0	Reserved
4	0	Not enable the rising edge latch position of probe 1
4	1	Enable latch position on rising edge of probe 1
5	0	Not enable the latch position of probe 1 falling edge
5	1	Enable the latch position of probe 1 falling edge
6, 7	0	Reserved
0	0	Probe 2 not enabled
8	1	Probe 2 enabled
9	0	Single trigger, probe 2 is triggered only when the trigger signal is valid for the first time
	1	Continuous trigger, probe 2 is triggered every time the trigger signal is valid
10	0	External IO signal, used as probe 1 trigger signal
10	1	C pulse, used as the trigger signal of probe 1
11	0	Reserved
12	0	Not enable the rising edge latch position of probe 2
12	1	Enable latch position on rising edge of probe 2
12	0	Not enable the latch position of probe 2 falling edge
13	1	Enable the latch position of probe 2 falling edge
14, 15	0	Reserved

60B9h: Touch Probe Status

Touch Probe Status (60B9h) indicates the touch probe status.

Index	Sub- index	Name	Visit	Data Type	Unit	Range	Default
60B9	00	Touch Probe Status	RO	UINT16	-	-	_

Each bit of Touch Probe Function (60B9h) is described as follows:

Bit	Value	Definition
0	0	Probe 1 not enabled
0 1		Probe 1 enabled
1	0	Probe 1 rising edge position latch has not been executed
1	1	Probe 1 rising edge position latch has been executed
2	0	Probe 1 falling edge position latch has not been executed
2	1	Probe 1 falling edge position latch has been executed
3 to 5	0	Reserved
6,7	0	In continuous mode, bit6 and bit7 record the times that the function of probe 1 has been executed; the value is counted cyclically between 0 and 3.
8	0	Probe 2 not enabled
0	1	Probe 2 enabled
0	0	Probe 2 rising edge position latch has not been executed
9	1	Probe 2 rising edge position latch has been executed
10	0	Probe 2 falling edge position latch has not been executed
10		Probe 2 falling edge position latch has been executed
11 to 13	0	Reserved
14, 15	0	In continuous mode, bit14 and bit15 record the times that the function of probe 2 has been executed; the value is counted cyclically between 0 and 3.

60BAh: TouchProbePos1PosValue

TouchProbePos1PosValue (60Bah) indicates the latch location when the Touch Probe1 trigger condition occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BA	00	TouchProbePos1PosValue	RO	INT32	1	ı	-

60BBh: TouchProbeNeg1PosValue

TouchProbeNeg1PosValue (60BBh) indicates the latch location when the trigger condition for Touch Probe1 falling edge occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BB	00	TouchProbeNeg1PosValue	RO	INT32	-	-	-

60BCh: TouchProbePos2PosValue

TouchProbePos2PosValue (60BCh) indicates the latch location when the Touch Probe2 trigger condition occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BC	00	TouchProbePos2PosValue	RO	INT32	_	-	-

60BDh: TouchProbeNeg2PosValue

TouchProbeNeg2PosValue (60BDh) indicates the latch location when the trigger condition for Touch Probe2 falling edge occurs.

Index	Sub-index	Name	Visit	Data Type	Unit	Range	Default
60BD	00	TouchProbeNeg2PosValue	RO	INT32	-	_	-

Pn331 and Pn332

You can allocate the TouchProbe functions by Pn331, and set Touch Probe Digital Input Filtering Time by Pn332. The Related Parameters are as following:

Para	Name	Range	Unit	Default	When Enabled
Pn331.0	CN1-18 Signal Allocation	0 to 2	_	0	
Pn331.1	CN1-19 Signal Allocation	0 to 2	_	1	After restart
Pn332	Touch probe Input Signal Filtering Time	0 to 1000	10 ns	0	Immediately

The signal allocation instructions for Touch probe 1 and Touch probe 2 are listed in table below.

Para	Setting	Meaning	When Enabled
	0	Allocate Touch probe 1 signal to pin CN1-18	
Pn331.0	1	Allocate Touch probe 2 signal to pin CN1-18	
	2	Not allocated	After restart
	0	Allocate Touch probe 1 signal to pin CN1-19	After restart
Pn331.1	1	Allocate Touch probe 1 signal to pin CN1-19	
	2	Not allocated	

Pn333

You can select whether to invert the Touch Probe 1 and Touch Probe 2 signals through the parameter Pn333. In general, it needs to be set according to the actual input signal level.

Para	Setting	Meaning	When Enabled	
Pn333.0	0	Do not invert CN-18 signal (take effective when low level)		
	1	Invert CN-18 signal (take effective when high level)	After restart	
Pn333.1	0	Do not invert CN-19 signal (take effective when low level)	After restart	
	1	Invert CN-19 signal (take effective when high level)		

6.15 Soft Limit Function

Software Position Limit defines the maximum and minimum absolute position commands. Every target position is checked against these limits. The limit positions are specified in user-defined position reference units, the same as for target positions, and are always relative to the machine home position. Before comparing with Target position, you need to use Home Offset to correct the position limit.

- corrected min position limit = min position limit home offset
- corrected max position limit = max position limit home offset

The software position limits are enabled at the following conditions:

- When homing is completed
- corrected min position limit < corrected max position limit

When the servo is not homed, if min position limit<max position limit, the servo takes max position limit and min position limit as the position limit; otherwise, the position command is not restricted by the position limit.

Index	Sub- index	Name	Visit	Data Type	Unit	Range	Default
	00	Software position	RO	UINT8	-	0 ~ 65535	0
607D	01	Min position limit	RW	INT32	-	- 2147483648 ~ 2147483647	ı
	02	Max position limit	RW	INT32	_	- 2147483648 ~ 2147483647	-

Chapter 7 Trial Operation

7.1 Preparations for Trail Operation

The procedure for trial operation is given below.

Step	Contents	Refers to
1	Installation Install the Motor and Drive according to the installation conditions. First, operation is checked with no load. Do not connect the Motor to the machine.	Chapter 2
2	Wiring and Connections Wire and connect the Drive. First, Motor operation is checked without a load. Do not connect the CN1 connector on the Drive.	
3	Confirmations before Trial Operation	7.2
4	Power ON	_
5	Resetting the Absolute Encoder If an absolute encoder is used, it is necessary to reset the absolute encoder.	5.6

7.2 Inspections and Confirmations

To ensure safe and correct trial operation, check the following items before you start trial operation.

- Make sure that the Drive and Motor are installed, wired, and connected correctly.
- Make sure that the correct power supply voltage is supplied to the Drive.
- Make sure that there are no loose parts in the Motor mounting.
- If you are using a Motor with an Oil Seal, make sure that the oil seal is not damaged. Also make sure that oil has been applied.
- If you are performing trial operation on a Motor that has been stored for a long period of time, make sure that all Motor inspection and maintenance procedures have been completed.
- If you are using a Motor with a Holding Brake, make sure that the brake is released in advance. To release the brake, you must apply the specified voltage of 24 VDC to the brake, for details see the section 3.6.4 Holding Brake Wiring.

7.3 Motor Operation without a Load

You use jogging for trial operation of the Motor without a load.

Jogging is used to check the operation of the Motor without connecting the Drive to the host controller. The Motor is moved at the preset jogging speed.

During jogging, the overtravel function is disabled.

Consider the range of motion of your machine when you jog the Motor.

7.3.1 Preparations

Always check the following before you execute jogging.

- The main circuit power supply must be ON.
- There must be no alarms.
- The Servo must not be in Safe State.
- The servo must be OFF.
- The jogging speed must be set considering the operating range of the machine.

Set the JOG speed by the following parameters

No.	Name	Range	Unit	Default	When enabled
Pn305	JOG speed	0 to 6000	rpm	500	Immediately
Pn306	Soft Start Acceleration Time	0 to 10000	ms	0	Immediately
Pn307	Soft Start Deceleration Time	0 to 10000	ms	0	Immediately

7.3.2 Applicable Tools

- Use the Panel Operator of the Drive
- Use the ESView V4 (Recommended)

7.3.3 JOG Operation

Use the Panel Operator of the Drive

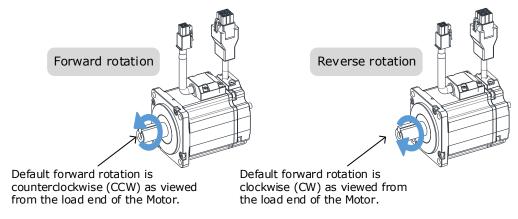
Before performing the JOG operation by using the Panel Operator, you shall check and set the relevant parameters properly.

For the method of checking and setting parameters by using the Panel Operator, refers to the section **4.1.4 Parameter Setting Mode**.

Following the below steps to jog the Motor.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn002.


Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to Servo ON (supply power to Motor).

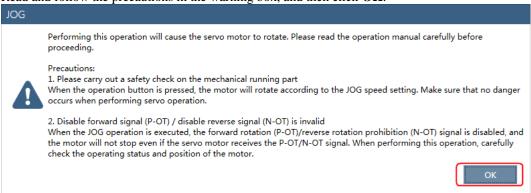
Press [M] key again to Servo OFF (not supply power to Motor).

Step 5 Press [▲] key or [▼] key to run the Motor in forward or reverse direction. Press and hold [▲] key or [▼] key to run the Motor continuously.

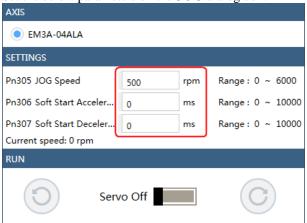
NOTE: The rotation direction of the Motor depends on the setting of Pn001.0 (CCW, CW). The figure above shows the default setting.

Step 6 Press the [◀] key to return to the display of the Fn002.

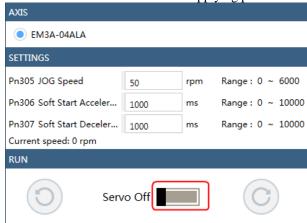
---- End


Use ESView V4

The Motor will operate only while a button is clicked on the ESView V4.


Step 1 Select **Run** > **JOG** in the **Menu Bar** of the *ESView V4* main windows.

Step 2 Read and follow the precautions in the warning box, and then click OK.



Step 3 Set the below parameters on the **JOG** dialog box.



- Pn305 **JOG Speed**: set the speed for jogging the Motor.
- Pn306 Soft Start Acceleration Time: set the time it takes for the Motor runs to JOG speed.
- Pn307 Soft Start Deceleration Time: set the time it takes for the Motor stops from JOG speed.

Step 4 Click **Servo Off / Servo On** for supplying power to the Motor.

Click the button **O** or **O** for running the Motor.

Click and hold the button or can run the Motor continuously, and the Motor can stop running when you release the button.

---- End

7.4 Motor Operation with a Load

7.4.1 Precautions

Operating mistakes that occur after the Motor is connected to the machine may not only damage the machine, but they may also cause accidents resulting in personal injury.

If you disabled the overtravel function for trial operation of the Motor without a load, enable the overtravel function (P-OT and N-OT signal) before you preform trial operation with the Motor connected to the machine in order to provide protection.

If you will use a holding brake, observe the following precautions during trial operation.

- Before you check the operation of the brake, implement measures to prevent vibration from being caused by the machine falling due to gravity or an external force.
- First check the Motor operation and brake operation with the Motor uncoupled from the machine. If no problems are found, connect the Motor to the machine and perform trial operation again.

Control the operation of the brake with the /BK (Brake) signal output from the Drive.

Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the Drive to fail, damage the Drive, damage the equipment, or cause an accident resulting in death or injury.

Observe the precautions and instructions for wiring and trial operation precisely as described in this manual.

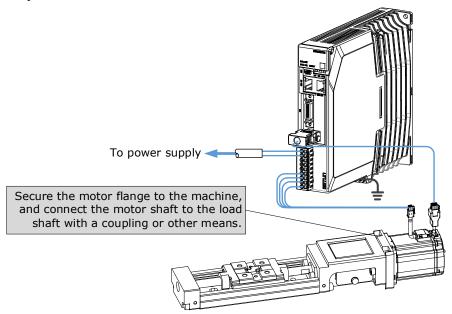
7.4.2 Preparations

Always confirm the following before you perform the trial operation procedure for both the machine and Motor.

- Make sure that the Drive is connected correctly to both the host controller and the peripheral devices.
- Overtravel wiring
- Brake wiring
- Allocation of the /BK (Brake) signal to a pin on the I/O signal connector (CN1)
- Emergency stop circuit wiring
- Host controller wiring

7.4.3 Operation Procedure

Step 1 Enable the overtravel signals.


Refers to the section 5.3 Overtravel Limi

Step 2 Make the settings for the protective functions, such as the safety function, overtravel, and the brake.

- For details on overtravel settings, refers to the section 5.3 Overtravel Limi.
- For details on holding brake settings, refers to the section $0 \square$ NOTE
- This setting is a percentage of the rated torque.

- The default setting is 300%. This setting is large enough to allow you to operate the Motor at the maximum torque. However, the maximum stop torque that you can actually use is the maximum torque of the Motor.
- Holding Brake.
- Step 3 Turn OFF the power supplies to the Drive.

 The control power supply and main circuit power supply will turn OFF.
- Step 4 Couple the Motor to the machine.

- Step 5 Turn ON the power supplies to the machine and host controller and turn ON the control power supply and main circuit power supply to the Drive.
- Step 6 Check the protective functions, such overtravel and the brake, to confirm that they operate correctly.
- Step 7 If necessary, adjust the servo gain to improve the Motor response characteristics.

 The Motor and machine may not be broken in completely for the trial operation. Therefore, let the system run for a sufficient amount of time to ensure that it is properly broken in.
- Step 8 For future maintenance, save the parameter settings with one of the following methods.
 - Use the ESView V4 to save the parameters as a file.
 - Record the settings manually.

This concludes the procedure for trial operation with both the machine and Motor.

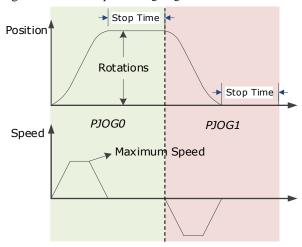
---- End

7.5 Program Jogging

You can use program jogging to perform continuous operation with a preset operation pattern, travel distance, movement speed, acceleration/deceleration time, waiting time, and number of movements.

You can use this operation when you set up the system in the same way as for normal jogging to move the Motor without connecting it to the host controller in order to check Motor operation and execute simple positioning operations.

7.5.1 Preparations


Always check the following before you execute program jogging.

- The parameters must not be written prohibited.
- The main circuit power supply must be ON.
- There must be no alarms.
- The Servo must not be in Safe State.
- The servo must be OFF.
- The range of machine motion and the safe movement speed of your machine must be considered when you set the travel distance and movement speed.
- There must be no overtravel.

7.5.2 Operation Description

Program jogging operation consists of two operation patterns (PJOG0 and PJOG1), you can set their relevant parameters respectively. Figure 7-1 shows an example of position-speed timing diagram in PJOG operation.

Figure 7-1 Position-speed timing diagram

The Drive will operator the Motor repeatedly according to the parameter settings of the two operation patterns until you stop the program jogging operation manually.

You can set the parameters Pn164 and Pn168 to a negative value for reversing the Motor, so that there are four ways of the operation in the program jogging, as is shown in Figure 7-2.

Round trip in positive direction

Speed

Movement in Positive direction

Speed

Speed

Speed

Speed

Speed

Speed

Movement in negative direction

Speed

Speed

Speed

Speed

Speed

Movement in negative direction

You shall set the Rotations (Pn164 and Pn168) and Max Speed (Pn165 and Pn169) to a proper value. If the Rotations is set too small or the Max Speed is set too large, it is possible that the maximum speed set cannot be reached. In this case, it is necessary to increase the Rotations or decrease the Max Speed.

7.5.3 Relevant Parameters

Parameter	Name	Range	Unit	Default	When Enabled
Pn164	Turns for PJOG0	-50 to 50	rotation	5	Immediately
Pn165	Max Speed for PJOG0	100 to 3000	rpm	1000	Immediately
Pn166	Acc./Dec. Time for PJOG0	50 to 2000	ms	500	Immediately
Pn167	Stop Time for PJOG0	100 to 10000	ms	1000	Immediately
Pn168	Turns for PJOG1	-50 to 50	rotation	-5	Immediately
Pn169	Max Speed for PJOG1	100 to 3000	rpm	1000	Immediately
Pn170	Acc./Dec. Time for PJOG1	50 to 2000	ms	500	Immediately
Pn171	Stop Time for PJOG1	100 to 10000	ms	1000	Immediately

7.5.4 Applicable Tools

- Use the Panel Operator of the Drive
- Use the ESView V4 (Recommended)

7.5.5 Operation Procedure

Use the Panel Operator of the Drive

Before performing the Program Jogging (PJOG) operation by using the Panel Operator, you shall check and set the following parameters properly.

Check and set the parameters Pn164 to Pn171 as proper values in advance, and ensure the movable parts have sufficient travel in the forward and reverse directions.

For the method of checking and setting parameters by using the Panel Operator, refers to the section 4.1.4 Parameter Setting Mode.

The following are the steps to run the Motor between the two programmed operation patterns (PJOG0 and PJOG1).

Step 1 Press [M] key several times to select the Utility Function Mode.

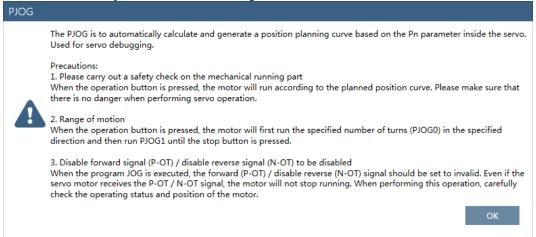
Step 2 Press [▲] key or [▼] key to select the function number Fn018.

Step 3 Press [◀] key, and Panel Operator displays as below.

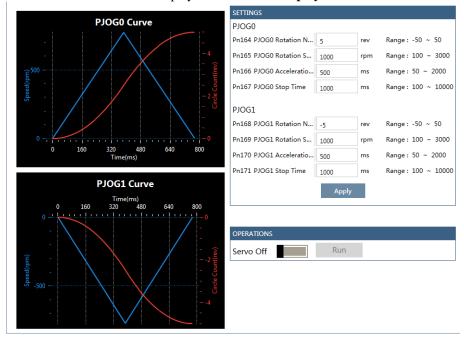
Step 4 Press [M] key to execute this operation, and Panel Operator displays as below.

Step 5 Press [◀] key to return to the display of the Fn018.

---- End


Use the ESView V4

The Motor can be run between the two programmed operation patterns (PJOG0 and PJOG1) by executing PJOG function.

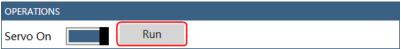

Step 1 Select Run > PJOG in the Menu Bar of the ESView V4 main windows.

Step 2 Read and follow the precautions in the warning box, and then click **OK**.

Step 3 The **PJOG** window will be displayed in **Function Display Area**.

SETTINGS PJOG0 Pn164 PJOG0 Rotation N.. Range: -50 ~ 50 rev Pn165 PJOG0 Rotation S.. 1000 rpm Range: 100 ~ 3000 Pn166 PJOG0 Acceleratio. 500 ms Range: 50 ~ 2000 Pn167 PJOG0 Stop Time Range: 100 ~ 10000 1000 ms PJOG1 Pn168 PJOG1 Rotation N. Range: -50 ~ 50 -5 rev Pn169 PJOG1 Rotation S. . rpm Range: 100 ~ 3000 1000 Pn170 PJOG1 Acceleratio .. Range: 50 ~ 2000 500 ms Pn171 PJOG1 Stop Time Range: 100 ~ 10000 1000 ms

Apply


Step 4 Set the relevant parameters for the operation patterns PJOG0 and PJOG1.

- Rotation Number: Set the numbers of rotation the Motor will run in the operation pattern PJOG0 or PJOG1.
- NOTE: The Motor can be run in reverse when this parameter is set to a negative value.
- Rotation Speed: Set the Motor running speed in the operation pattern PJOG0 or PJOG1.
- Acceleration/Deceleration Time: Set the time it takes for the Motor runs to Rotation Speed or the Motor stops from Rotation Speed.
- Stop Time: Set the hold time when the Motor stops running in the operation pattern PJOG0 or PJOG1, and then switches to the other operation pattern.
- Step 5 Click **Apply** to complete the settings.

Step 6 Click **Servo Off / Servo On** for supplying power to the Motor.

Step 7 Click Run.

The Motor will be run between the operation patterns PJOG0 and PJOG1.

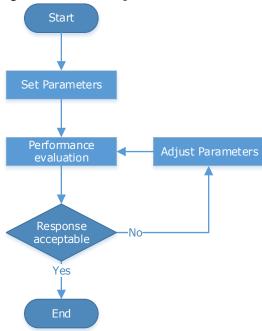
Click Stop for stopping the Motor running.

The Motor can be stopped when you close ESView V4 or PJOG window.

---- End

Chapter 8 Tuning

8.1 Overview


8.1.1 Basic Conception

Tuning is the process of satisfying the servo performance by adjusting the parameters involved in the control law.

Tuning Flow

The process of tuning is usually an iterative process, and Figure 8-1 shows the general flow.

Figure 8-1 General Tuning Process

Parameter Classification

There are two types of parameters in the tuning.

- Function Parameters: refers to some application function selections or switches that may improve Servo performance.
- Adjustment Parameters: increasing or decreasing these parameters may improve Servo performance.

Servo Performance

In general, the indicators used to evaluate Servo performance are bandwidth, response time, overshoot, steady state error, anti-load disturbance, speed ripple fluctuation, torque ripple, and so on. Table 8-1 shows the comparison of the graphics before and after tuning in the example indicators.

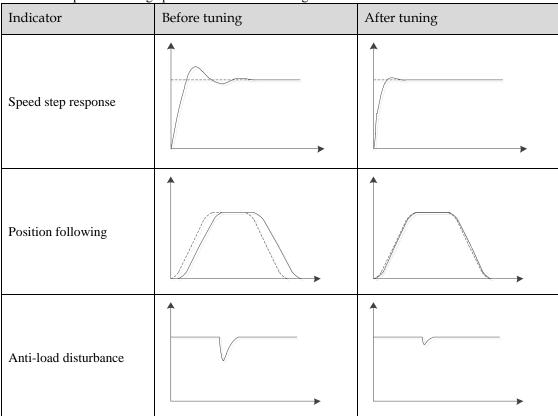
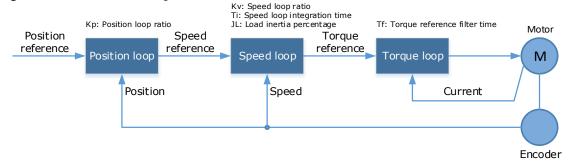
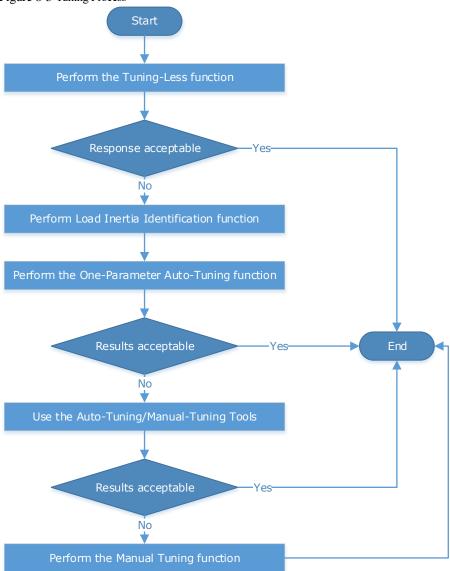



Table 8-1 Comparison of the graphics before and after tuning

8.1.2 Control Block Diagram

It is necessary to learn the Servo control principle and Figure 8-2 shows the Servo control block diagram. The position loop, the speed loop and the torque loop are cascade structures, corresponding to the position control mode, the speed control mode and the torque control mode respectively.

Figure 8-2 Servo control block diagram



NOTE: only the basic tuning parameters during the tuning are shown in the figure.

8.1.3 Tuning Process

The Drive provides a variety of tuning methods, you can adjust the device according to the process shown in Figure 8-3, in order to obtain the desired Servo performance.

Figure 8-3 Tuning Process

It is necessary to perform the tuning operation again if the Motor had been disassembled or the load device had been replaced.

8.1.4 Precautions Before Tuning

- Before performing the tuning operation, make sure the limit function is available.
- Before performing the tuning operation, make sure that an emergency stop can be performed at any time.
- Before performing the tuning operation, you shall set the torque limit according to actual condition.
- Never touch the moving parts during the tuning operation.

8.2 Tuning Modes

8.2.1 Tuning-Less

Function Description

The tuning-less performs auto-tuning to obtain a stable response regardless of the type of machine or changes in the load. Autotuning is started when the Servo is turned ON.

The tuning-less function uses an Autotune parameters adjustment module that updates the position loop and speed loop parameters in real time based on the servo operating state (position, speed, current). Figure 8-4 shows the block diagram in tuning-less.

Host reference Controller

Position loop Speed loop Torque loop M

Position Speed Current

Drive Encoder

Figure 8-4 Block diagram in tuning-less

When using the tuning-less function, the following parameters are automatically adjusted.

Parameter	Adjustment method
Speed Loop Gain	Auto-tuning
Speed Loop Integral Time	Auto-tuning
Position Loop Gain	Auto-tuning
Torque Command Filter Time	Auto-tuning
Load Inertia Percentage	Auto-tuning

NOTE: The parameters will not change automatically in tuning-less function.

Applicated Case

- Applied for that no more than 30 times the load moment of inertia.
- Applied for any rotation speed.

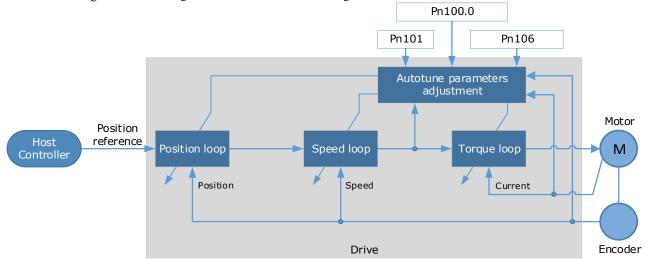
Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn100.0	1 [Default]	Set the Tuning Mode as Tuning-less .	After restart	Function

Application Restrictions

The following functions or applications are not available in the Tuning-less function:

- Gain switch is disabled.
- P/PI Switch is disabled.
- Speed feedback by using observed speed is disabled.
- Load Torque Compensation is disabled.
- Model Following Control Function is disabled.


8.2.2 One-Parameter Auto-Tuning

Function Description

This tuning function is similar to the tuning-less function, using an Autotune parameters adjustment module that updates the position loop and speed loop parameters in real time based on the servo operating state (position, speed, current).

Only the parameter Pn101 (Servo Rigidity) needs to set in One-Parameter Auto-Tuning function, and Figure 8-5 shows the block diagram in One-Parameter Auto-Tuning.

Figure 8-5 Block diagram in One-Parameter Auto-Tuning

Before performing One-Parameter Auto-Tuning, you need to manually set the following parameters:

Parameter	Name	Description
Pn106	Load Inertia Percentage	Properly setting the Load Inertia Percentage is a prerequisite for the One-Parameter Auto-Tuning to obtain a better Servo performance. You can calculate the load inertia percentage (difficult and complex) by yourself, or you can get it by the utility function Fn009 or by ESView V4, certainly, you can directly modify the parameters by the host controller.
Pn100.3	Damping Selection	Select a damping method according to your requirement and application. • [0] Standard: Short positioning time, but prone to overshoot. Select a damping method according to your requirement and application. • [1] Stable: Stable positioning, but long positioning time. Positioning point
Pn101	Servo Rigidity	The Servo Rigidity determines the response characteristic of the position loop or speed loop. The performance can be improved by increasing the Servo Rigidity, and decrease it if a vibration occurs. The figure below shows the speed step response for different Servo Rigidities:

When using One-Parameter Auto-Tuning function, the following parameters are automatically adjusted.

Parameter	Adjustment method
Speed Loop Gain	Auto-tuning
Speed Loop Integral Time	Auto-tuning
Position Loop Gain	Auto-tuning
Torque Command Filter Time	Auto-tuning

NOTE: The parameters will not change automatically in tuning-less function.

Compared to Tuning-less, there are some features below in One-Parameter Auto-Tuning:

- Tuning based on a proper load inertia percentage can get a better servo performance.
- The setting of Servo Rigidity can be applied to more operating conditions.

Applicated Case

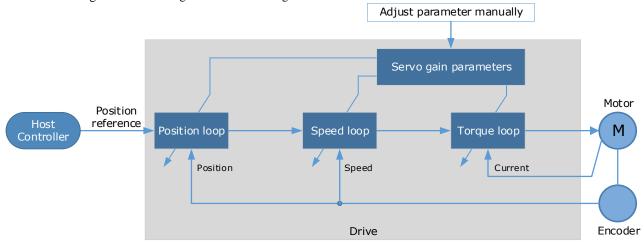
- Applied for that more than 50 times the load moment of inertia.
- Applied for any rotation speed.

Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn100.0	3	Set the Tuning Mode as One-Parameter Auto-Tuning .		Function
Dr. 100.2	0	Set the damping method in One-Parameter Auto-Tuning as Standard .	After restart	
Pn100.3	1	Set the damping method in One-Parameter Auto-Tuning as Stable .		
Pn101	_	Servo Rigidity	Immediately	Adjustment
Pn106	_	Load Inertia Percentage	Immediately	Adjustment

Application Restrictions

The following functions or applications are not available in One-Parameter Auto-Tuning function:


- Gain switch is disabled.
- Model Following Control Function is disabled.

8.2.3 Manual Tuning

Function Description

In the Manual Tuning, you need to manually adjust the gain parameters without using the autotune parameter adjustment module, until the Servo get the desired performance. Figure 8-6 shows the block diagram in Manual Tuning.

Figure 8-6 Block diagram in Manual Tuning

It is necessary to adjust the three-loop control parameters of the Servo from the inside out, that is, the adjustment sequence is $\boxed{\text{Torque loop}} \rightarrow \boxed{\text{Speed loop}} \rightarrow \boxed{\text{Position loop}}$. In addition, in order to meet the stability, the bandwidth setting should be the largest in the torque loop, the speed loop is the second, and the position loop is the smallest.

The following parameters need to be adjusted in each loop when performing Manual Tuning.

- Torque loop (Torque Control Mode)
- Torque Reference Filter Time (Tf):

The torque reference filter filters the torque reference to remove the high frequency band, which can effectively reduce the torque ripple of the Motor output, eliminate signal noise and reduce the temperature rise of the Motor.

The larger the Torque Reference Filter Time, the better the filtering effect on the torque reference. However, the greater the phase lag, and the slower the torque response. Therefore, a smaller acceptable value should be set to obtain a larger torque loop bandwidth in the actual tuning.

- Speed loop (Speed Control Mode)
 - Relevant parameter in torque loop (Tf)
- Load Inertia Percentage (JL)

Properly setting the Load Inertia Percentage is a prerequisite for the tuning to obtain a better Servo performance.

You can calculate the load inertia percentage (difficult and complex) by yourself, or you can get it by the utility function Fn009 or by ESView V4, certainly, you can directly modify the parameters by the host controller.

- Speed Loop Gain (Kv), Speed Loop Integral Time (Ti)

The speed loop is controlled using a Proportional-Integral Controller that contains Speed Loop Gain and Speed Loop Integral Time. Both of them determine the speed loop bandwidth and anti-disturbance performance of the Servo.

In general, if you can increase the setting of the Speed Loop Gain, the speed loop bandwidth will be increased and the anti-load disturbance performance will be better. And, if you can decrease the setting of the Speed Loop Integral Time, the integral action will be stronger, the speed loop bandwidth will be increased, and the anti-load disturbance performance will be better. In addition, the integral action may reduce the steady-state error to zero.

Table 8-2 lists several commonly used adjustment methods based on the characteristics of the speed step response.

Table 8-2 Adjustment example in speed loop

Response Curve	Description	Adjustment method
	Speed loop bandwidth is high	Properly decrease the Speed Loop Gain or increase the Speed Loop Integral Time.
	Speed loop damping ratio is low	Properly increase the Speed Loop Integral Time.
	Steady-state error is existed	Properly decrease the Speed Loop Integral Time.
	Speed loop bandwidth is low	Properly increase the Speed Loop Gain or decrease the Speed Loop Integral Time.

It is recommended to increase the Speed Loop Gain and decrease the Speed Loop Integral Time to obtain a larger speed loop bandwidth.

- Position loop (Position Control Mode)
 - Relevant parameters in speed loop (Kv, Ti, Tf, and JL)
- Position Loop Gain (Kp)

The position loop is controlled using a Proportional Controller that only contains the Position Loop Gain. This parameter determines the position loop bandwidth. If you increase the Position Loop Gain, the position loop bandwidth will be increased and the anti-load disturbance performance will be better. However, overshooting and vibration in the position reference may be occurred.

It is recommended to set the Position Loop Gain to a quarter of the Speed Loop Gain, and make appropriate adjustments based on this.

Applicated Case

- Applied for that more than 50 times the load moment of inertia.
- Applied for any rotation speed.


Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn100.0	5 [Default]	Set the Tuning Mode as Manual tuning .	After restart	Function
Pn102/Pn107	_	Speed Loop Gain	Immediately	Adjustment
Pn103/Pn108	_	Speed Loop Integral Time	Immediately	Adjustment
Pn104/Pn109	_	Position Loop Gain	Immediately	Adjustment
Pn105/Pn110	_	Torque Command Filter Time	Immediately	Adjustment

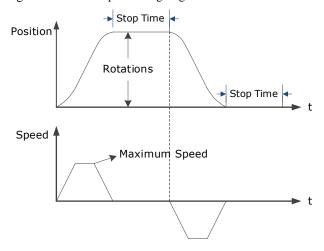
NOTE: the settings of Pn107 to Pn110 are taken effect after the gain is switched.

8.3 Tuning Tools

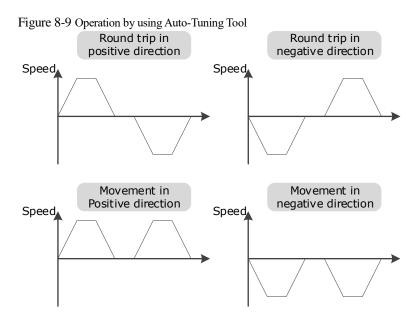
There is an Auto-Tuning Tool and a Manual Tuning Tool in Tuning tools. When using a tuning tool, the Drive will execute the position references generated internally, Figure 8-5 shows the block diagram in using a tuning tool.

The reference generator plans an appropriate position reference according to the settings of relevant parameter.

Since the limit function is unavailable when using the tuning tools, please make sure that the movable parts have sufficient travel in the planned motion track.


8.3.2 Auto-Tuning Tool

Function Description


With the Auto-Tuning Tool, the reference generator can plan the position curve and generate a position reference as inputs to the position loop.

There are two operation patterns (POS0 and POS1), you can set their relevant parameters respectively. Figure 8-8 shows an example of position-speed timing diagram in PJOG operation.

Figure 8-8 Position-speed timing diagram

The Drive will operator the Motor repeatedly according to the parameter settings of the two operation patterns until the tuning is completed. You can set the parameters Pn164 and Pn168 to a negative value for reversing the Motor, so that there are four ways of the operation in the program jogging, as is shown in Figure 8-9.

You shall set the Rotations (Pn164 and Pn168) and Max Speed (Pn165 and Pn169) to a proper value. If the Rotations is set too small or the Max Speed is set too large, it is possible that the maximum speed set cannot be reached. In this case, it is necessary to increase the Rotations or decrease the Max Speed.

Use the Auto-Tuning Tool as shown in Figure 8-10.

Set parameters for reference generator

Check and confirm the safety of the motion

Use the Auto-Tuning Tool

Result of execution

Success

Faulure

Execute again

Yes

No

Write parameters

Figure 8-10 Auto-Tuning Tool flowchart

The following parameters are automatically adjusted when using the auto-tuning tool.

Parameter	Adjustment method	Write into
Speed Loop Gain	Auto-tuning	Pn102
Speed Loop Integral Time	Auto-tuning	Pn103
Position Loop Gain	Auto-tuning	Pn104
Torque Command Filter Time	Auto-tuning	Pn105

- The parameters cannot be changed automatically when using the Auto-Tuning Tool.
- You have to choose whether to save (write) the parameters into the Drive. If you choose to save, parameters will be changed, but they are only available for Manual Tuning function.

Applicated Case

- Applied for the high rigidity (up to 20 times load moment of inertia) equipment.
- Applied for the low rigidity (up to 10 times load moment of inertia) equipment.
- The number of revolutions is more than 1 rotation, and the rotation speed is higher than 100 rpm.

Relevant Parameters

Parameter	Setting	Description	When Enabled	Classification
Pn106	_	Load Inertia Percentage	Immediately	Adjustment
Pn164	_	Turns for PJOG0	Immediately	Adjustment
Pn165	-	Max Speed for PJOG0	Immediately	Adjustment
Pn167	_	Stop Time for PJOG0	Immediately	Adjustment
Pn168	_	Turns for PJOG1	Immediately	Adjustment
Pn169	_	Max Speed for PJOG1	Immediately	Adjustment
Pn171	_	Stop Time for PJOG1	Immediately	Adjustment

Application Restrictions

You can use the automatic vibration suppression function when using the auto-tuning tool.

The following functions or applications are not available when using Auto-Tuning Tool:

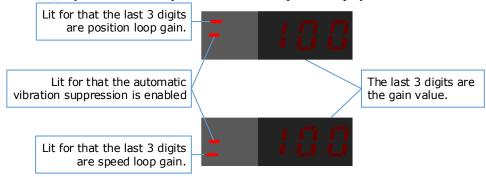
- Gain switch is disabled.
- Model Following Control Function is disabled.
- Notch Filter is disabled.
- Vibration Suppression is disabled.
- Load Oscillation Suppression is disabled.

The Auto-Tuning Tool is unavailable in fully-closed loop control.

Operation Procedure: Use the Panel Operator of the Drive

The following are the steps to use the Auto-tuning tool.

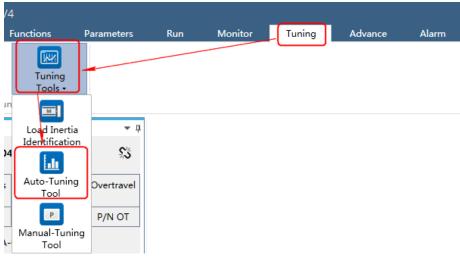
Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press $[\blacktriangle]$ key or $[\blacktriangledown]$ key to select the function number Fn017.

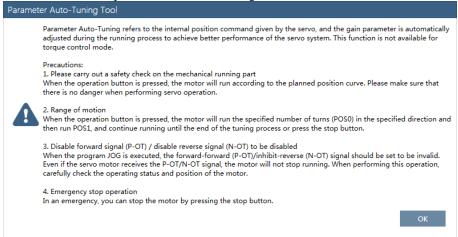
Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to execute this operation, and Panel Operator display as below.

Step 5 When this operation has been completed, Panel Operator will display the result of execution.


Step 6 Press [◀] key to return to the display of the Fn017.

---- End


Operation Procedure: Use the ESView V4

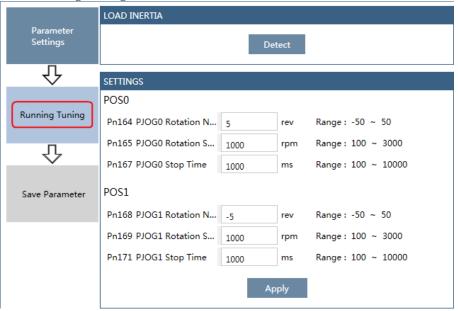
By using the Auto-Tuning Tool, the Drive can automatically perform the round-trip (forward and reverse) operation to adjust for machine characteristics.

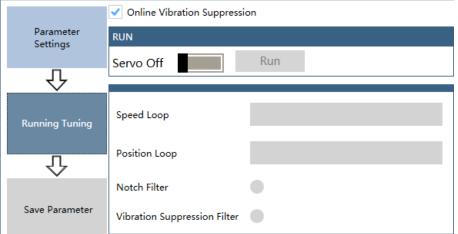
Step 1 Select **Tuning** \rightarrow **Tuning Tools** \rightarrow **Auto-Tuning Tool** in the **Menu Bar** of the *ESView V4* main windows.

Step 2 Read and follow the precautions in the warning box, and then click **OK**.

Step 3 The Auto-Tuning Tool window will be displayed in Function Display Area.

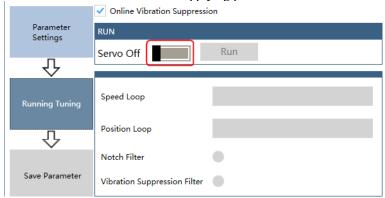
Step 4 Click **Detect** to perform **Load Inertia Identification** function if necessary.


Step 5 Set the relevant parameters for the operation patterns POS0 and POS1.

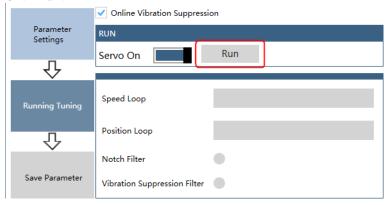

- Rotation Number: Set the numbers of rotation the Motor will run in the operation pattern POS0 or POS1
- Rotation Speed: Set the Motor running speed in the operation pattern POS0 or POS1.

- Stop Time: Set the hold time when the Motor stops running in the operation pattern POS0 or POS1, and then switches to the other operation pattern.
- Step 6 Click **Apply** to complete the settings.

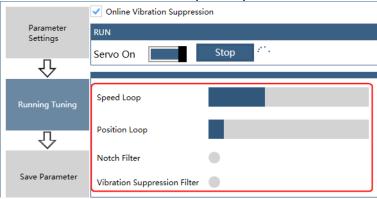
Step 7 Click Running Tuning.



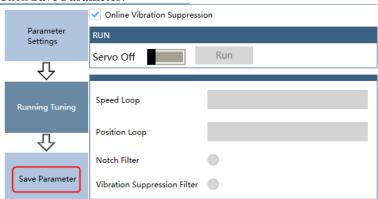
Step 8 The window will display the preparations before running the tuning.

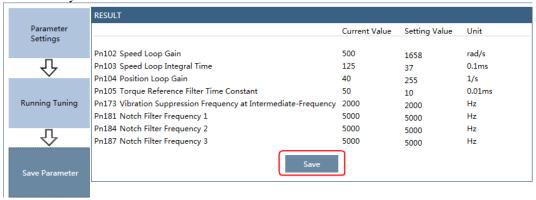


The setting will be written into the Drive automatically after you check or uncheck **Online Vibration Suppression** option.


Step 9 Click **Servo Off** / **Servo On** for supplying power to the Motor.

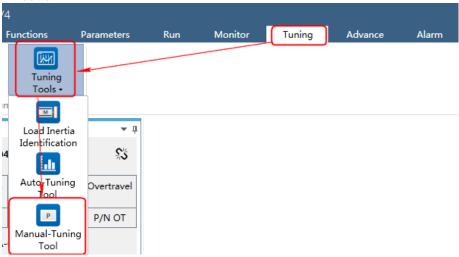
Step 10 Click Run.


Step 11 The Motor will be run between the operation patterns POS0 and POS1.

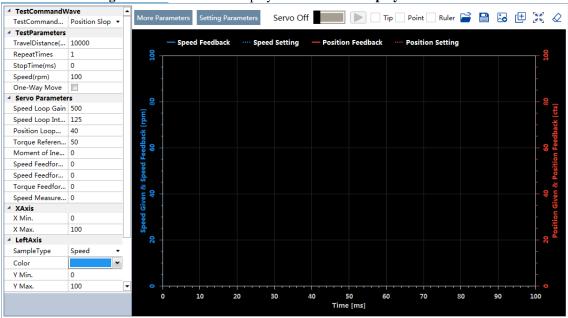

Step 12 Click **OK** when the **Auto-Tuning Tool** function has been completed.

Step 13 Click Save Parameter.

Step 14 Check the **RESULT**, and click **Save**, the settings of parameters will be written into the Drive automatically.

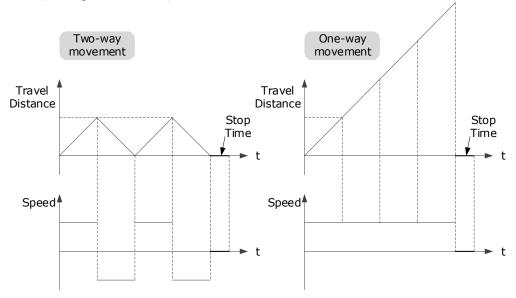


---- End


8.3.3 Manual-Tuning Tool

By using the Manual-Tuning Tool, you will set the Servo gain parameters again and again according to the waveform graphics of the data (Speed Feedback, Speed Setting, Position Feedback and Position Setting), as far as the performance of the servo meets the requirements.

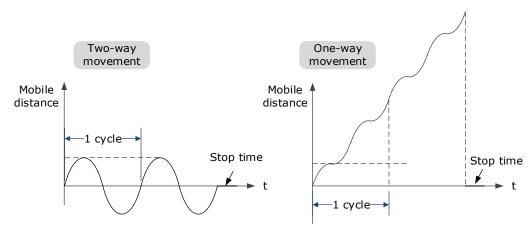
Step 1 Select **Tuning** → **Tuning Tools** → **Manual-Tuning Tool** in the **Menu Bar** of the *ESView V4* main windows.


Step 2 The Manual-Tuning Tool window will be displayed in Function Display Area.

Step 3 Set the necessary parameters of the **Test Command**.

• Choose **Test Command Wave** as **Position Slope**, the Drive will operate in position control method, and the trajectory of the Motor in Two-way movement and One-way movement is shown in the figure

below. (Set Repeat Times as 2)

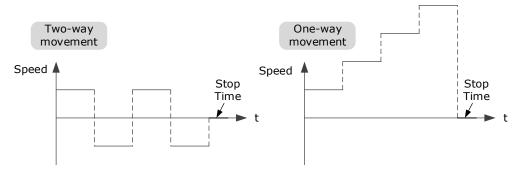


The relevant parameters in the **Position Slope** are shown in the table below.

Parameter	Range	Description	
Travel Distance	-9 999 999 to 9 999 999	The travel distances the Motor moves in one command. The positive and negative values indicate the direction of rotation.	
Repeat Times	1 to 10	The number of times the command was executed.	
Stop Time	0 to 32767	Set the hold time when the Motor stops running.	
Frequency	1 to 50	The number of cycles the command completes in 1 second.	
One-Way Move	-	Check this option indicates that the Motor is running in One-way movement.	

• Sinusoidal of position

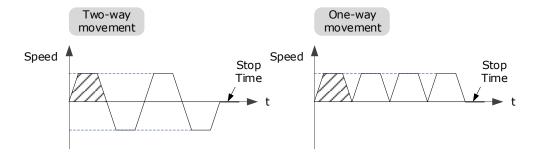
When "Test instruction waveform" is set to "position sine", the driver will run in position control mode, and the position instruction generated internally makes the motor move in non-unidirectional motion and the track of unidirectional motion as shown in Figure 8-14 (" Repetition times "is set to 2).


The relevant parameters in the **Position Stepwise** are shown in the table below.

Parameter	Range	Description	
Travel Distance	-9 999 999 to 9 999 999	The travel distances the Motor moves in one command. The positive and negative values indicate the direction of rotation.	
Repeat Times	1 to 10	The number of times the command was executed.	
Stop Time	0 to 32767	Set the hold time when the Motor stops running.	
Stepwise Time	1 to 32767	The time to execute one command.	
One-Way Move	-	Check this option indicates that the Motor is running in One-way movement.	

• Queue a position steps

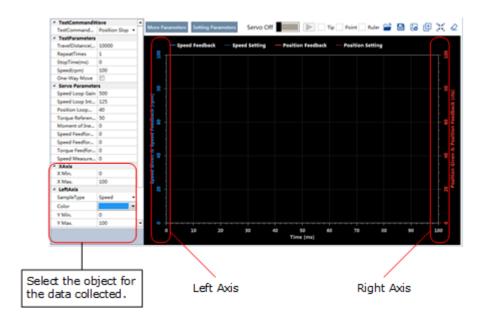
When "Test instruction waveform" is set to "position step", the driver will run in position control mode, and the position instructions internally generated make the motor move in non-unidirectional and unidirectional time sequence as shown in Figure 8-15 (assuming "repetition times" is set to 2).


位置阶跃指令

Parameter	Range	Description		
Travel Distance	-9 999 999~9 999 999 999	The travel distances the Motor moves in one command.		
Traver Distance		The positive and negative values indicate the direction of rotation.		
Repeat Times	1~10	The number of times the command was executed.		
Stop Time	0~32767	Set the hold time when the Motor stops running.		
Speed	1~32767	The speed of the Motor when the command is executed.		
Acceleration	_	The travel distances the Motor moves in one command. The positive and negative values indicate the direction of rotation.		

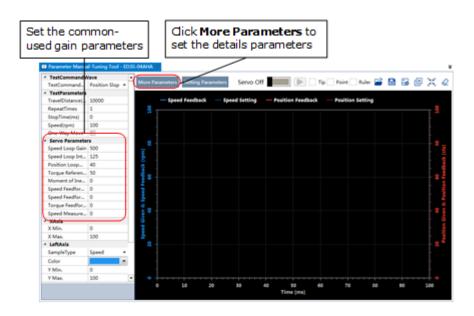
• Linear velocity trapezoid

When "Test Instruction Waveform" is set to "speed trapezoid", the driver will run in position control mode, and the position instruction generated internally makes the motor in non-unidirectional motion and unidirectional motion speed waveform as shown in Figure 8-15 (" Repetition times "is set to 2).



Anyway, you risk losing your set speed by setting the "travel distance" too small.

The relevant parameters in the Speed Trapezoid are shown in the table below.


Parameter	Range	Description		
Travel Distance	-9 999 999 to 9 999 999	The travel distances the Motor moves in one command. The positive and negative values indicate the direction of rotation.		
Repeat Times	1 to 10	The number of times the command was executed.		
Stop Time	0 to 32767	Set the hold time when the Motor stops running.		
Speed	0 to 3000	The speed of the Motor when the command is executed.		
Acceleration	1 to 65535	The Acceleration of the Motor when the command is executed.		
One-Way Move	-	Check this option indicates that the Motor is running in One-way movement.		

Step 4 Set the necessary parameters for the data collected.

- X Axis: Indicates Times.
- Left Axis: Select **Sample Type** as **Speed** or **Position**. This selection will affect the **Sample Type** of the Right Axis.
- Right Axis: Select Sample Type as None, Speed, Position, or Offset.
 The setting Offset indicates the deviation of the sample type (speed or position) selected by the left axis.

Step 5 Set the necessary parameters for the Servo gain.

The parameters that may be used are shown in Table 8-3.

Table 8-3 The parameters that may be used

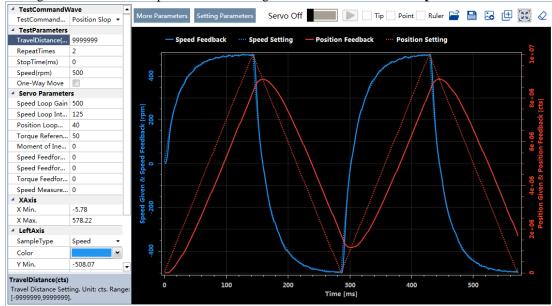
Туре	Parameter	Name	Range	Unit	Default	When Enabled
Pn102 Pn103 Pn104 Pn105 Pn106 Pn107 Pn108 Pn109	Pn102	Speed Loop Gain	1 to 10000	rad/s	500	Immediately
	Pn103	Speed Loop Integral Time	1 to 5000	0.1ms	125	Immediately
	Pn104	Position Loop Gain	0 to 1000	1/s	40	Immediately
	Pn105	Torque Command Filter Time	0 to 2500	0.01ms	50	Immediately
	Pn106	Load Inertia Percentage	0 to 9999	%	0	Immediately
	Pn107	Second Speed Loop Gain	1 to 10000	rad/s	250	Immediately
	Pn108	Second Speed Loop Integral Time	1 to 5000	0.1ms	200	Immediately
	Pn109	Second Position Loop Gain	0 to 1000	1/s	40	Immediately

Туре	Parameter	Name	Range	Unit	Default	When Enabled
	Pn110	Second Torque Reference Filter Time	0 to 2500	0.01ms	100	Immediately
	Pn116	P/PI Switch Mode	0 to 4	_	0	After restart
	Pn117	Torque Reference Threshold for P/PI Switch	0 to 300	200	%	Immediately
	Pn118	Deviation Counter Threshold for P/PI Switch	0 to 10000	0	1 pulse	Immediately
	Pn119	Acceleration Reference Threshold for P/PI Switch	0 to 3000	0	10 rpm/s	Immediately
	Pn120	Speed Reference Threshold for P/PI Switch	0 to 10000	rpm	0	Immediately
	Pn121	Gain Switch Mode	0 to 10	-	0	After restart
	Pn122	Delay Time for Gain Switch	0 to 20000	0.1 ms	0	Immediately
	Pn123	Threshold for Gain Switch	0 to 20000	-	0	Immediately
	Pn124	Speed Threshold for Gain Switch	0 to 2000	rpm	0	Immediately
	Pn125	Ramp Time for Position Loop Gain Switch	0 to 20000	0.1ms	0	Immediately
	Pn126	Hysteresis for Gain Switch	0 to 20000	-	0	Immediately
Feedforward and Vibration Suppression	Pn005	Application Function Selections 5	00d0 to 33d3	_	00d0	
	Pn005.0	Internal Torque Feedforward Method	0 to 3	_	0	
	Pn005.1	Local Control Method	d to d	-	d	After restart
	Pn005.2	Torque Feedforward Method	0 to 3	_	0	
	Pn005.3	Speed Feedforward Method	0 to 3	_	0	
	Pn112	Speed Feedforward	0 to 100	%	0	Immediately

Туре	Parameter	Name	Range	Unit	Default	When Enabled
	Pn113	Speed Feedforward Filter Time	0 to 640	0.1ms	0	Immediately
	Pn114	Torque Feedforward	0 to 100	%	0	Immediately
	Pn115	Torque Feedforward Filter Time	0 to 640	0.1ms	0	Immediately
	Pn150	Model Following Control Function	0000 to 0002	_	0000	· After restart
	Pn150.0	Model Following Control Selection	0 to 2	-	0	After restart
	Pn151	Model Following Control Gain	10 to 1000	1/s	50	Immediately
	Pn152	Model Following Control Gain Correction	20 to 500	%	100	Immediately
	Pn153	Model Following Control Speed Feedforward	0 to 200	%	100	Immediately
	Pn154	Model Following Control Torque Feedforward	0 to 200	%	100	Immediately
	Pn155	Load Oscillation Frequency	50 to 500	0.1Hz	100	Immediately
	Pn156	Filter Time for Load Oscillation Suppression	2 to 500	0.1ms	10	Immediately
	Pn157	Limit for Load Oscillation Suppression	0 to 1000	rpm	100	Immediately
	Pn173	Frequency of Vibration Suppression Filter	100 to 2000	Hz	2000	Immediately
	Pn174	Adjust Bandwidth of Vibration Suppression Filter	1 to 100	-	30	Immediately
	Pn175	Vibration Suppression	0 to 500	-	100	Immediately
	Pn176	Lowpass Filter Time for Vibration Suppression	0 to 50	0.1ms	0	Immediately
	Pn177	Highpass Filter Time for Vibration Suppression	0 to 1000	0.1ms	1000	Immediately

Туре	Parameter	Name	Range	Unit	Default	When Enabled
	Pn178	Damping of Vibration Suppression Filter	0 to 500	-	100	Immediately
	Pn181	Frequency of Notch Filter 1	50 to 5000	Hz	5000	Immediately
	Pn182	Depth of Notch Filter 1	0 to 23	-	0	Immediately
	Pn183	Width of Notch Filter 1	0 to 15	-	2	Immediately
	Pn184	Frequency of Notch Filter 2	50 to 5000	Hz	5000	Immediately
	Pn185	Depth of Notch Filter 2	0 to 23	-	0	Immediately
	Pn186	Width of Notch Filter 2	0 to 15	-	2	Immediately
	Pn187	Frequency of Notch Filter 3	50 to 5000	Hz	5000	Immediately
	Pn188	Depth of Notch Filter 3	0 to 23	-	0	Immediately
	Pn189	Width of Notch Filter 3	0 to 15	-	2	Immediately
	Pn127	Low Speed Filter	0 to 100	1cycle	0	Immediately
	Pn130	Coulomb Friction Compensation	0 to 3000	0.1%Tn	0	Immediately
	Pn131	Speed Dead Band for Coulomb Friction Compensation	0 to 100	rpm	0	Immediately
Others	Pn132	Viscous Friction Compensation	0 to 1000	0.1%Tn/1000rpm	0	Immediately
	Pn135	Encoder Speed Filter Time	0 to 30000	0.01ms	4	Immediately
	Pn160	Load Torque Compensation	0 to 100	%	0	Immediately
	Pn161	Load Torque Observer Gain	0 to 1000	Hz	200	Immediately
	Pn162	Feedback Speed Selection	0 to 1	-	0	After restart

Step 6 Click Servo Off / Servo On for supplying power to the Motor.


Step 7 Click to start using Manual-Tuning Tool.

The Motor will run according to the set parameters and perform the data collecting.

Step 8 When the **Manual-Tuning Tool** function has been completed, the waveform graphics of the data result is displayed in the window.

The figure below is an example of data collecting results with the **Position Slope** command.

- Step 9 Repeat setting the parameters and perform the data collecting until result meets the requirements.
- Step 10 Click **Setting Parameters** after confirming that the results have reached the desired performance, and the parameters will be written into the Drive.

----End

8.4 Feedback Speed Selection

The speed feedback from the encoder is the calculate result that the Drive read the position value from the encoder and differentiate time.

There is a speed observer inside the Drive for detecting the speed of the Motor in real time. The detected speed can be used for host controller monitoring or as a speed feedback for the speed loop.

In the case of low speed or low encoder resolution, the method of position-to-time differentiation introduces large noise. You can set Pn162=1 to use observed speed as the feedback speed.

In addition, you can increase the setting of Pn161 for making the observed speed closer to the actual speed, but overshooting will be likely to occur.

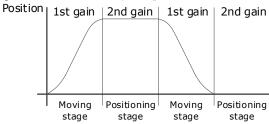
Parameter	Setting	Meaning	When Enabled	Classification
Pn161	_	Load Torque Observer Gain	Immediately	Adjustment
Pn162	0 [Default]	Use encoder speed as the feedback speed.	A from montout	Function
	1	Use observed speed as the feedback speed.	After restart	runcuon

If you keep the default setting of Pn162, you can use a low-pass filter to eliminate the noise and high-frequency band, in this case, you shall set Encoder Speed Filter Time (Pn135) as a proper value.

Increase the setting of Pn135, the filtering effect will be better, and the encoder feedback speed will be smooth, but the phase lag of the speed feedback is also larger, which can reduce the servo performance.

Parameter	Setting	Meaning	When Enabled	Classification
Pn135	-	Encoder Speed Filter Time	Immediately	Adjustment

8.5 Additional Adjustment Functions

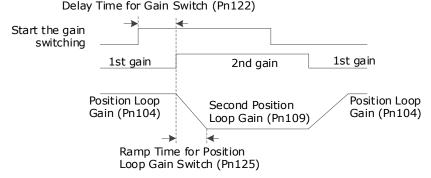

8.5.1 Gain Switching

Function Description

The gain switching function can be used for the manual tuning. It is required to switch from 1st gain parameters to 2nd gain parameters for the Servo operation in a specific stage, so that the overall performance of the Servo system can reach the desired performance.

Take Figure 8-11 as an example, the position stage focuses on the performances such as position ripples and positional rigidity, while the moving stage focuses on the performance such as following error. In this case, two switchable groups of gain parameters are required to meet the Servo performance.

Figure 8-11 Gain switching example



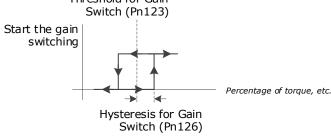
The parameters of the first gain and the second gain are as follows.

Parameter	First Gain	Second Gain
Speed Loop Gain	Pn102	Pn107
Speed Loop Integral Time	Pn103	Pn108
Position Loop Gain	Pn104	Pn109
Torque Command Filter Time	Pn105	Pn110

The gain switching function includes two settings: one is the conditions for starting the gain switching and the other is which process to start the gain switching. Figure 8-1213 shows a timing diagram for the gain switching.

Figure 8-12 Gain switching timing diagram

Conditions for the Gain Switching


The Drive uses the first group of gain parameters by default. You can set the parameter Pn121 (Gain Switch Mode) as a desired value, so that the second group of gain parameters are used when the condition set in Pn121 are met.

Parameter	Setting	Meaning	When Enabled	Classification
	0 [Default]	Fixed to first group gains.		
	1	Use external signal (G-SEL) as the condition.		
	2	Use torque reference as the condition (threshold setting: Pn117).		
	3	Use position deviation counter as the condition (threshold setting: Pn118).		Function
	4	Use acceleration as the condition (threshold setting: Pn119).	After restart	
Pn121	5	Use speed reference as the condition (threshold setting: Pn120).		
	6	Use position reference as the condition (threshold setting: Pn123).		
	7	Use actual speed as the condition (threshold setting: Pn124).		
	8	Use position reference (Pn123) and actual speed (Pn124) as the condition.		
	9	Fixed to second group gains.		
	10	Use positioning completed flag as the condition.		

- Set Pn121 to 0 (Fixed to first group gains), indicating that the first group of gain parameters is always
 used.
- Set Pn121 to 1 (Use external signal (G-SEL) as the condition) or 10 (Use positioning completed flag as the condition), indicating that switch to second group of gain parameters when the G-SEL signal is active or positioning completed, otherwise the first group of gain parameters is used.
- Set Pn121 as 2 to 7, indicating that switch to second group of gain parameters when the switching condition exceeds the set threshold value, otherwise the first group of gain parameters is used.

 In this case, you can set a proper Hysteresis for Gain Switch (Pn126) to avoid the error between input and output, and Figure 8-13 shows the diagram for this setting.

Figure 8-13 Hysteresis for Gain Switch diagram
Threshold for Gain

- Set Pn121 to 8 (Use position reference and actual speed as the condition), indicating that there are two conditions to be met when switching to the second gain:
 - Condition 1: Hysteresis switching based on position reference, you shall set a proper Threshold value for Gain Switch (Pn123) and Hysteresis for Gain Switch (Pn126).
 This condition is met when the output exceeds the sum of Pn123 and Pn126.

 Condition 2: Switch based on actual speed judgment, and you shall set a proper Speed Threshold for Gain Switch (Pn124).

This condition is met when the actual speed exceeds the threshold value.

Both condition 1 and condition 2 are met, switching to second group of gain parameters, otherwise the first group of gain parameters is used.

• Set Pn121 to 9 (Fixed to second group gains), indicating that the second group of gain parameters is always used.

Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn122	ı	Delay Time for Gain Switch	Immediately	Adjustment
Pn123	_	Threshold for Gain Switch	Immediately	Adjustment
Pn124	_	Speed Threshold for Gain Switch	Immediately	Adjustment
Pn125	-	Ramp Time for Position Loop Gain Switch	Immediately	Adjustment
Pn126	_	Hysteresis for Gain Switch	Immediately	Adjustment

8.5.2 P/PI Switching

The Drive uses the Proportional-Integral Controller by default to adjust the speed loop. You can set Pn116 (P/PI Switch Mode) for switching to the Proportional Controller when the set condition is met.

Parameter	Setting	Meaning	When Enabled	Classification
Pn116	0 [Default]	Use torque reference as the condition (threshold setting: Pn117).		Function
	1	Use position deviation counter as the condition (threshold setting: Pn118).		
	2	Use acceleration reference as the condition (threshold setting: Pn119)	After restart	
	3	Use the speed reference as the condition (threshold setting: Pn120).		
	4	Fixed to PI Control.		

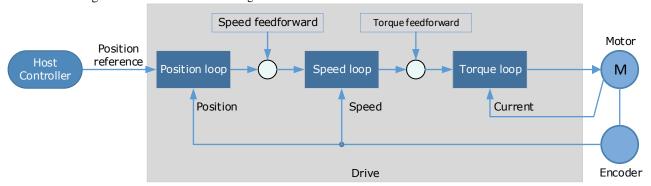
- Set Pn116 to 4 (Fixed to PI Control), indicating that the Proportional-Integral Controller is always
 used.
- Set Pn116 as 0 to 3, indicating that switch to Proportional Controller when the switching condition exceeds the set threshold value, otherwise the Proportional-Integral Controller is used.

The relevant threshold parameters are shown in the table below.

Parameter	Setting	Meaning	When Enabled	Classification
Pn117	-	Torque Reference Threshold for P/PI Switch	Immediately	Adjustment
Pn118	-	Deviation Counter Threshold for P/PI Switch	Immediately	Adjustment
Pn119	-	Acceleration Reference Threshold for P/PI Switch	Immediately	Adjustment

Parameter	Setting	Meaning	When Enabled	Classification
Pn120	-	Speed Reference Threshold for P/PI Switch	Immediately	Adjustment

Take the default settings as an example, the default setting of Pn116 is **0** (Use torque reference as the condition), and the default Torque Reference Threshold for P/PI Switch (Pn117) is 200, in this case, when the torque reference percentage exceeds 200, the speed loop adjustment will be switched from PI control to P control, and then if the torque reference percentage is not more than 200, the speed loop adjustment is switched to PI control.


8.5.3 Feedforward

Feedforward includes speed feedforward and torque feedforward.

- Speed feedforward can improve position response and reduce position following error
- Torque feedforward can improve the speed response and reduce the speed following error

Figure 8-1415 shows the block diagram in the feedforward function.

Figure 8-14 Feedforward block diagram

In general, the differential of the position reference is used as the feedforward, you can also set the feed forward by the controller or other application functions.

You can set Pn005 to select the method for the feedforward.

Parameter	Setting	Meaning	When Enabled	Classification
Pn005.3	0 [Default]	Use the internal speed feedforward.		Function
	1	Use the model following control speed feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.		
	2	Use the speed feedforward set by the controller, which is available in the bus control and set by the object 60B1h.	After restart	
	3	Use the speed feedforward generated by Cubic interpolation algorithm, which is available when the object 60C0h is set to Cubic interpolation algorithm in bus control.		
Pn005.2	0 [Default]	Use the internal torque feedforward.		

Parameter	Setting	Meaning	When Enabled	Classification
	1	Use the model following control torque feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.		
	2	Use the torque feedforward set by the controller, which is available in the bus control and set by the object 60B2h.		
	3	Use the torque feedforward generated by Cubic interpolation algorithm, which is available when the object 60C0h is set to Cubic interpolation algorithm in bus control.		

Internal Feedforward

In order to reduce the overshoot caused by the feedforward when the setting of Pn005.3 or Pn005.2 is 0, it is necessary to set Speed Feedforward (Pn112) or Torque Feedforward (Pn114) to adjust the feedforward compensation value.

- Internal Speed Feedforward = Differential of position reference × Speed Feedforward
- Internal Torque Feedforward = Differential of speed reference × Load Inertia Percentage × Torque Feedforward

In addition, it is required to filter the noise caused by the differential for the feedforward. You can increase the Filter Time for the feedforward, the noise can be filtered better, but overshooting may be occurred.

In the case of high rotation speed, you shall set Pn005.0 to 2 and Pn005.2=0.

Parameter	Setting	Meaning	When Enabled	Classification
Pn005.0	0	Use the general internal torque feedforward.	After restart	Function
Ph003.0	2	Use the high-speed internal torque feedforward.	After restart	
Pn112	_	Speed Feedforward	Immediately	Adjustment
Pn113	-	Speed Feedforward Filter Time	Immediately	Adjustment
Pn114	_	Torque Feedforward	Immediately	Adjustment
Pn115	_	Torque Feedforward Filter Time	Immediately	Adjustment

Model Following Control Feedforward

You shall confirm and set that the Model Following Control function has been enabled (Pn150.0=1 or 2), and then set Pn005.3=1(Use the model following control speed) or Pn005.2=1 (Use the model following control torque feedforward).

Feedforward Set by Controller

The setting of Pn005.3=2 (Use the speed feedforward set by the controller) or Pn005.2=2 (Use the torque feedforward set by the controller) is only available for EtherCAT Communication.

The relevant objects are 60B1h and 60B2h.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60B1h	0	Velocity Offset	INT32	RW	Yes	-2147483648 to 2147483647
60B2h	0	Torque Offset	INT16	RW	Yes	-32768 to 32767

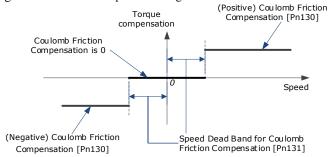
Feedforward calculated by Cubic Interpolation

The setting of Pn005.3=3 (Use the speed feedforward generated by Cubic interpolation algorithm) or Pn005.2=3 (Use the torque feedforward generated by Cubic interpolation algorithm) is only available for EtherCAT Communication.

The relevant object is 60C0h.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60C0h	0	Interpolation sub mode select	INT16	RW	No	-1

8.5.4 Friction Compensation


The load friction must exist in the transmission system. However, severe load friction may cause low-speed crawling, waveform distortion at speed zero-crossing, positioning lag, etc., which can affect the dynamic and static performance of the Servo system.

The friction compensation function is that the Drive compensates the load friction by using the relevant parameter settings, which can be used for applications with frequently forward and reverse motion, and high speed-stability requirements.

Friction compensation is used to compensate for viscous friction fluctuations and coulomb friction fluctuations.

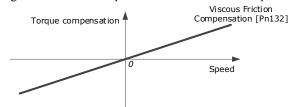
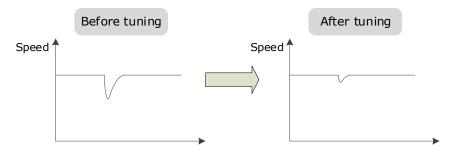

You can set Coulomb Friction Compensation (Pn130) manually, and its direction is consistent with the direction of rotation speed. In addition, it is necessary to set Speed Dead Band for Coulomb Friction Compensation (Pn131) to avoid the Motor changing the compensation direction frequently near zero speed, in this case, the Friction Compensation in the Dead Band is 0, as is shown in Figure 8-15.

Figure 8-15 Friction compensation diagram

The viscous friction compensation is a linear relationship with the Motor speed, as is shown in Figure 8-16. You can set the Viscous Friction Compensation by Pn132.

Figure 8-16 Relationship between viscous friction and speed


Parameter	Setting	Meaning	When Enabled	Classification
Pn130	_	Coulomb Friction Compensation	Immediately	Adjustment
Pn131	_	Speed Dead Band for Coulomb Friction Compensation	Immediately	Adjustment
Pn132	_	Viscous Friction Compensation	Immediately	Adjustment

8.5.5 Load Torque Compensation

If there is a sudden load torque during the operation of the Motor, the speed will decrease or the position will move. The continuously changing load torque will also cause the speed fluctuation or position jitter. In this case, it is generally necessary to improve the anti-load disturbance performance of the servo by tuning.

In the tuning process, the load torque compensation function can be used to improve the anti-load disturbance performance, considering that the reference response performance and the load disturbance resistance cannot be balanced.

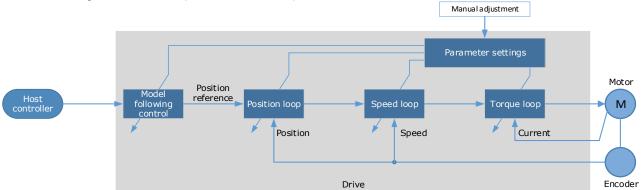
As shown in the figure below, the speed drop is caused by a sudden load torque, and the load torque compensation function can be used to reduce the drop of the speed.

The load torque compensation function is to compensate the load torque compensation to the torque reference through the load torque observer.

To reduce the overshoot caused by load torque compensation, use the load disturbance compensation percentage to adjust the compensation value:

Load Torque Compensation = Load Torque Observer × Load Inertia Percentage (Pn160)

In addition, you can adjust the bandwidth of the load torque observer via Load Torque Observer Gain (Pn161). Increase the setting of Pn161 for making the observed torque closer to the actual torque, but overshooting will be likely to occur.


Parameter	Setting	Meaning	When Enabled	Classification
Pn160	-	Load Torque Compensation	Immediately	Adjustment

Parameter	Setting	Meaning	When Enabled	Classification
Pn161	-	Load Torque Observer Gain	Immediately	Adjustment

8.5.6 Model Following Control

The Model Following Control is outside of the position loop. In Model Following Control, new position references are generated based on the theoretical Motor control model, and relevant speed feedforward and torque feedforward are generated. Applying these controls to the actual control loop can significantly improve the response performance and positioning performance of the position control. Figure 8-17 shows the block diagram in model following control.

Figure 8-17 Block diagram in model following control

To use the Model Following Control function, set the following parameter.

Parameter	Setting	Meaning	When Enabled	Classification
	0 [Default]	Do not use Model Following Control.		
Pn150.0	1	Use the model following control.	After restart	Function
	2	Use the model following control and load oscillation suppression.		

To use the Model Following Control properly, you shall adjust the relevant parameters in the order of Forque Loop - Speed Loop - Position Loop - Model Following Control.

For details on the relevant parameter of Torque Loop, Speed Loop and Position Loop, refers to the section 8.2.3 Manual Tuning. The relevant parameters of Model Following Control are as follows.

Parameter	Setting	Meaning	When Enabled	Classification
Pn151	_	Model Following Control Gain	Immediately	Adjustment
Pn152	_	Model Following Control Gain Correction	Immediately	Adjustment

The Model Following Control Gain (Pn151) determines the position response performance, and increase this setting can improve speed of response, but overshooting will be likely to occur.

The Model Following Control Gain Correction (Pn152) determines the damping ratio, and increase this setting can also increase the damping ratio.

The (speed/torque) feedforward in Model Following Control is a percentage factor that is used to adjust the output feedforward.

Parameter	Setting	Meaning	When Enabled	Classification
Pn153	_	Model Following Control Speed Feedforward	Immediately	Adjustment
Pn154	_	Model Following Control Torque Feedforward	Immediately	Adjustment

NOTE: only when Pn005.3=1 or Pn005.2=1, the settings of above parameter are available.

The following application restrictions apply to the Mode Following Control.

- Only applied for the Manual Tuning.
- Only applied for the Position Control Modes.
- It is unavailable in fully-closed loop control.

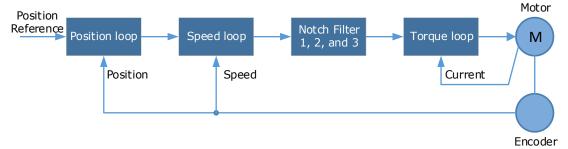
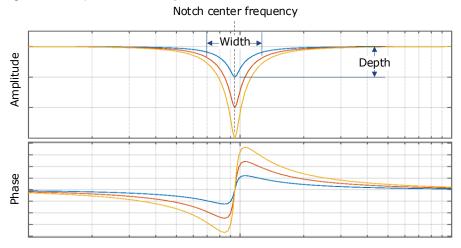
8.6 Vibration Suppression

8.6.1 Notch Filter

The notch filter is used to eliminate vibration caused by mechanical resonance.

There are three notch filters in the Drive, those who can used independently or in combination, Figure 8-18 shows the block diagram of using the notch filters.

Figure 8-18 Block diagram of using the notch filters

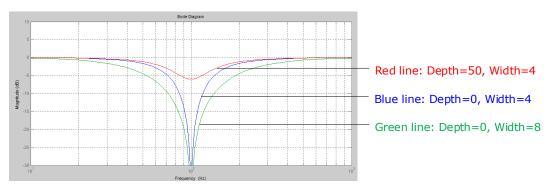

Figure 8-19 shows the relevant parameters for the notch filter. Since the notch filter can attenuate the signal at the notch frequency, if you set a proper frequency (Pn181, Pn184 or Pn187), depth (n182, Pn185 or Pn188) and width (n183, Pn186 or Pn189), the vibration signal in the torque reference can be filtered.

Figure 8-19 Diagram of notch filter parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn181	_	Frequency of Notch Filter 1	Immediately	Adjustment
Pn182	_	Depth of Notch Filter 1	Immediately	Adjustment
Pn183	_	Width of Notch Filter 1	Immediately	Adjustment
Pn184	_	Frequency of Notch Filter 2	Immediately	Adjustment
Pn185	_	Depth of Notch Filter 2	Immediately	Adjustment
Pn186	_	Width of Notch Filter 2	Immediately	Adjustment
Pn187	_	Frequency of Notch Filter 3	Immediately	Adjustment
Pn188	_	Depth of Notch Filter 3	Immediately	Adjustment
Pn189	_	Width of Notch Filter 3	Immediately	Adjustment

- Set the frequency of notch filter to 5000, indicating the notch filter is unavailable.
- The setting range of the depth is from 0 to 23.
- The setting range of the width is from 0 to 15.

8.6.2 IF (Intermediate Frequency) Vibration Suppression

The IF vibration suppression filter is used to process the speed deviation and compensated to the torque reference. It is applied for the frequency range 100 Hz to 2000 Hz. Figure 8-20 shows the block diagram of using the IF vibration suppression filter.

Figure 8-20 Block diagram of using the IF vibration suppression filter

IF vibration suppression filter

Highpass filter

Speed reference

Speed loop

Speed loop

Figure 8-20 Block diagram of using the IF vibration suppression filter

Lowpass filter

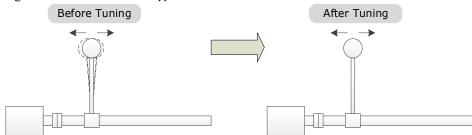
Damping gain

Motor

Torque loop

Motor

- Pn173 determines the frequency center at which vibration suppression is to be performed.
- Pn174 determines the vibration suppression bandwidth of the filter, indicating the range of the adjustment filter near the center frequency. Increase this setting can increase the range of vibration suppression, but it will affect the phase of the frequency near the center.
- The highpass filter and the lowpass filter are respectively used to filter high frequency DC signals and low frequency DC signals.
- Pn178 determines the level of the final compensated IF vibration suppression.


Parameter	Setting	Meaning	When Enabled	Classification
Pn173	_	Frequency of Vibration Suppression Filter	Immediately	Adjustment
Pn174	_	Adjust Bandwidth of Vibration Suppression Filter	Immediately	Adjustment
Pn175	_	Vibration Suppression	Immediately	Adjustment
Pn176	_	Lowpass Filter Time for Vibration Suppression	Immediately	Adjustment
Pn177	_	Highpass Filter Time for Vibration Suppression	Immediately	Adjustment
Pn178	_	Damping of Vibration Suppression Filter	Immediately	Adjustment

NOTE: Set Pn173 to 2000, indicating the notch filter is unavailable.

8.6.3 Load Oscillation Suppression

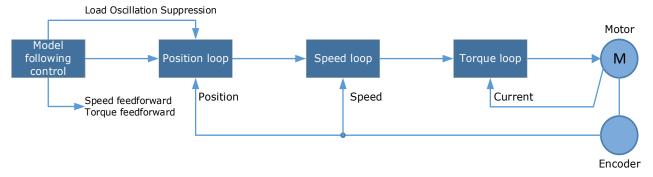

Use the Load Oscillation Suppression function for suppressing low frequency jitter at the end of the load during position control, as is shown in Figure 8-21.

Figure 8-21 Load Oscillation Suppressio

This function is based on the Model Following Control. According to the relationship between the load position and the Motor position in the Model Following Control, aiming at controlling the stability of the load position, and correcting the position reference, as well as the feedforward generated by the Model Following Control. Figure 8-22 shows the block diagram of using the Load Oscillation Suppression.

Figure 8-22 Load Oscillation Suppression

Parameter	Setting	Meaning	When Enabled	Classification
Pn150.0	2	Use the model following control and load oscillation suppression.	After restart	Function
Pn155	_	Load Oscillation Frequency	Immediately	Adjustment
Pn156	_	Filter Time for Load Oscillation Suppression	Immediately	Adjustment
Pn157	_	Limit for Load Oscillation Suppression	Immediately	Adjustment

- Pn155 determines frequency at which Load Oscillation Suppression is to be performed.
- Pn156 determines the filter time. You can increase this setting, and the filtering effect will be better. However, it may reduce the suppression effect due to the lag.
- You can set Limit for Load Oscillation Suppression (Pn157) as a proper limit value, helping to reduce overshooting during the start and stop.

Frequency Detection for Load Oscillation Suppression

If the frequency for the Load Oscillation Suppression can be detected by a measuring instrument (laser interferometer, etc.), please write the frequency data (in 0.1 Hz) into the Pn155 directly.

You can also use related functions in ESView V4 (FFT, etc.) to measure the frequency for the Load Oscillation Suppression.

Application Restrictions

The following application restrictions apply to the Load Oscillation Suppression.

- Load Oscillation Suppression can only be used when the Model Following Control is in effect.
- Only applied for the Manual Tuning.
- Only applied for the Position Control Modes.
- It is unavailable in fully-closed loop control.

8.6.4 Automatic Vibration Suppression

The automatic vibration suppression function determines the vibration state by the Motor during operation and recognizes the vibration frequency, and then selects the notch filter or the intermediate frequency vibration suppression function according to the characteristics of the vibration and automatically sets the vibration frequency.

The automatic vibration suppression function determines and detects the vibration frequency during the operation of the Motor, and then choose the notch filter or the IF suppression function, and set the relevant parameters for the vibration suppression.

Parameter	Setting	Meaning	When Enabled	Classification	
Pn100.2	0 [Default]	Automatic Vibration Suppression is disabled.	After restart	Function	
Pn100.2	1	Automatic Vibration Suppression is enabled.	After restart	runction	
Pn179	_	Amplitude Threshold for Vibration Detection	Immediately	Adjustment	

Pn179 determines the threshold of a frequency amplitude. If the detected frequency amplitude exceeds this setting, it will be regarded as a vibration.

Applied in Tuning-less, One-Parameter Auto-Tuning, Manual Tuning, and Manual-Tuning Tool

When the automatic vibration suppression function is applied in the Tuning-less, One-Parameter Auto-Tuning, Manual Tuning, and Manual-Tuning Tool, the following parameters can be set temporarily.

Parameter	Setting	Meaning	When Enabled	Classification
Pn184	_	Frequency of Notch Filter 2	Immediately	Adjustment
Pn173	_	Frequency of Vibration Suppression Filter	Immediately	Adjustment

Applied in Auto-Tuning Tool

When the automatic vibration suppression function is applied in the Auto-tuning Tool, the following parameters can be preset, and you can decide whether to write into the Drive.

Parameter	Setting	Meaning	When Enabled	Classification
Pn181	-	Frequency of Notch Filter 1	Immediately	Adjustment
Pn184	_	Frequency of Notch Filter 2	Immediately	Adjustment
Pn187	-	Frequency of Notch Filter 3	Immediately	Adjustment

Parameter	Setting	Meaning	When Enabled	Classification
Pn173	_	Frequency of Vibration Suppression Filter	Immediately	Adjustment

8.7 Diagnostic Tools

8.7.1 Load Inertia Identification

The Load Inertia Identification function is used to calculate the load inertia relative to the Motor rotor inertia (percentage of load inertia).

The Motor will rotate back and forth several times (the maximum rotations is 8) when using this function. You can change the number of Motor rotations for this function by the parameter Pn172.

Parameter	Setting	Meaning	When Enabled	Classification	
Pn172	0 [Default]	8 rotations	Immodiately	Eunation	
PIII / 2	1	4 rotations	Immediately	Function	

- Stop the Motor running before performing this function.
- Ensure the movable parts have sufficient travel in the forward and reverse directions, as the Motor will run for up to 8 rotations during this operation.

Use the Panel Operator of the Drive

The following are the steps to execute the load inertia identification by using the Panel Operator.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press $[\blacktriangle]$ key or $[\blacktriangledown]$ key to select the function number Fn009.

Step 3 Press [◀] key, and Panel Operator displays as below.

- Step 4 Press [M] key to execute the load inertia identification.

 At this time, Panel Operator displays the speed of the Motor in real time.
- Step 5 When this operation has been completed, Panel Operator will display the detection result (Unit: %).

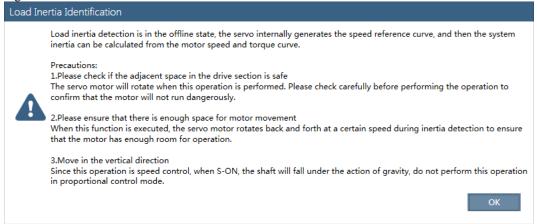
NOTE: You can press the [M] key several times to execute this operation until the detection result is confirmed.

Step 6 Press [▲] key to write the detection value to the parameter Pn106 (Load Inertia Percentage).


Step 7 Press [◀] key to return to the display of the Fn009.

----End

Use the ESView V4


The following are the steps to execute the load inertia identification by using ESView V4.

Step 1 Select **Advance** → **Load Inertia Identification** in the **Menu Bar** of the *ESView V4* main windows, as shown in Figure 8-23.

Step 2 Read and follow the precautions in the warning box, and then click **OK**, as shown in

Figure 8-24 notes of load intertia identification

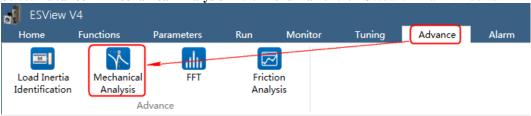
Step 3 Set Circle Count on the Load Inertia Identification dialog box, indicating the rotation number of the Motor when Load Inertia Identification function is performed.

Step 4 Click Servo Off / Servo On for supplying power to the Motor.

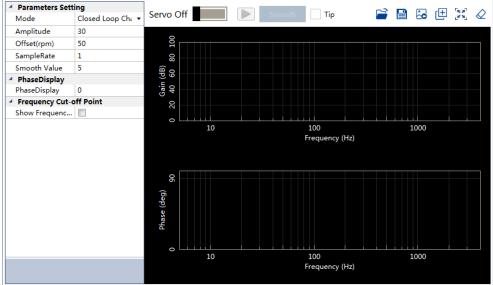
Step 5 Click Run.

Step 6 When the **Load Inertia Identification** function has been completed, the result will be displayed in the textbox.

Step 7 Click Save to write the value into the parameter Pn106 of the Drive.

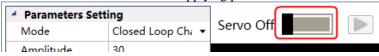

----End

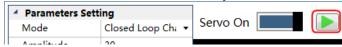
8.7.2 Mechanical Analysis



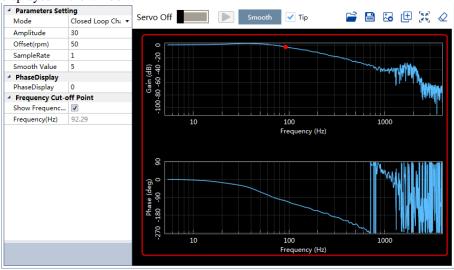
Stop the Motor running before performing this function.

This function measures the frequency characteristics of a mechanical system where a Drive is connected to a PC. It enables the measurement of mechanical frequency characteristics without the use of special equipment.


Step 2 The Mechanical Analysis window will be displayed in Function Display Area.



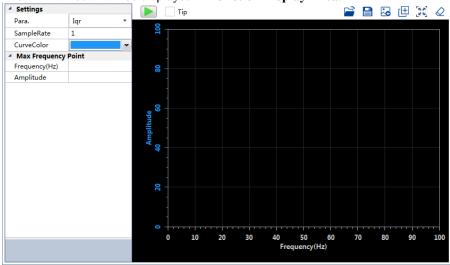
Step 3 Set the necessary parameters before performing the **Mechanical Analysis** function.


Step 4 Click Servo Off / Servo On for supplying power to the Motor.

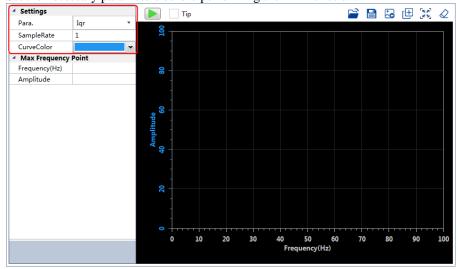
Step 5 Click to start the **Mechanical Analysis** function.

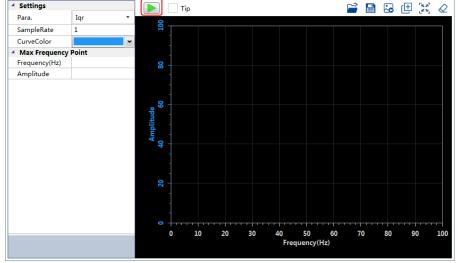
Step 6 When the **Mechanical Analysis** function has been completed, the waveform graphics of the data result is displayed in the window.

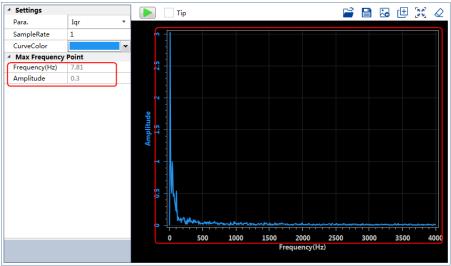
----End


8.7.3 FFT

This function can analyze the vibration frequency of the machine and draw the graphics on the window when the Motor is running.

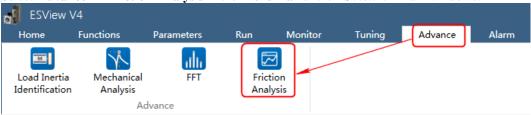

Step 1 Select **Advance** → **FFT** in the **Menu Bar** of the *ESView V4* main windows.

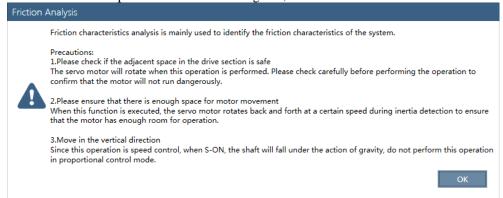

Step 2 The **FFT** window will be displayed in **Function Display Area**.


Step 3 Set the necessary parameters before performing the FFT function.

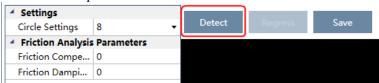
Step 5 When the **FFT** function has been completed, the waveform graphics of the data result is displayed in the window.

----End


8.7.4 Friction Analysis


Stop the Motor running before performing this function.

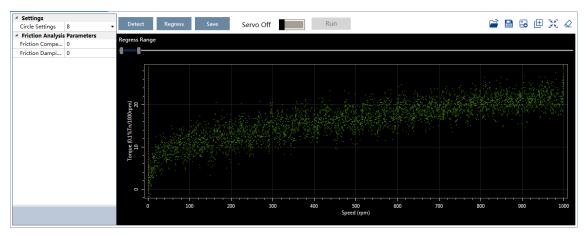
The parameters related to friction compensation of the Servo system can be set according to the friction characteristics of the Motor operation.

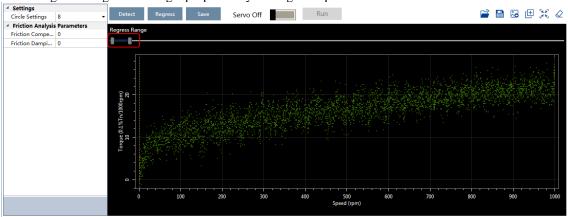

Step 1 Select Advance -> Friction Analysis in the Menu Bar of the ESView V4 main windows.

Step 2 Read and follow the precautions in the warning box, and then click OK.

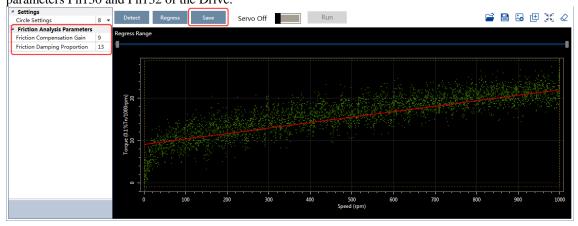
- Step 3 The Friction Analysis window will be displayed in Function Display Area.
- Step 4 Click **Detect** to perform Load Inertia Identification function if necessary.

Step 5 Set Circle Settings for the Motor rotation when performing Friction Analysis function.


Step 6 Click **Servo Off / Servo On** for supplying power to the Motor.


Step 7 Click Run.

Step 8 When the **Friction Analysis** function has been completed, the waveform graphics of the data result is displayed in the window.



Step 9 Move Regress Range for setting a proper analysis range of Speed.

Step 10 Click Regress for calculating the Friction Compensation Gain and Friction Damping Proportion.

Step 11 Click **Save** to write **Friction Compensation Gain** and **Friction Damping Proportion** into the parameters Pn130 and Pn132 of the Drive.

----End

Chapter 9 MODBUSCommunications

9.1 Communication Wiring

The connection terminals CN3-IN and CN4-OUT are used for MODBUS communications.

Connector	Pin	Definition	Description	
^	3	RS485+	RS-485 communication terminal +	
	4	GNDW	Signal CND	
	5	GNDW	Signal GND	
	6	RS485-	RS-485 communication termina-	
	Housing	FG	Shielded wire is connected to the housing	

[Note] The signal definitions of CN3-IN and CN4-OUT are the same.

9.2 Setting Communication Parameters

Number	Name	Setting & Meaning	When Enabled
Pn700.0	MODBUS Communication Baud Rate	[0]: 4800bps [1]: 9600bps [2]: 19200bps	
Pn700.1	Communication Protocol	[0]: 7, N, 2 (Modbus, ASCII) [1]: 7, E, 1 (Modbus, ASCII) [2]: 7, O, 1 (Modbus, ASCII) [3]: 8, N, 2 (Modbus, ASCII) [4]: 8, E, 1 (Modbus, ASCII) [5]: 8, O, 1 (Modbus, ASCII) [6]: 8, N, 2 (Modbus, RTU) [7]: 8, E, 1 (Modbus, RTU) [8]: 8, O, 1 (Modbus, RTU)	After restart
Pn700.2	Communication Protocol Selection [0] No protocol SCI communication [1] MODBUS SCI communication		
Pn701	Axis Address	Axis address of MODBUS protocol communication	

9.3 MODBUS Communication Protocol

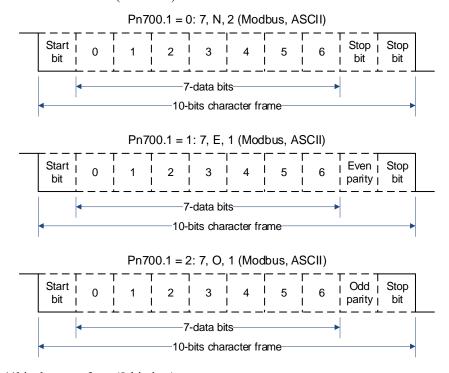
MODBUS communication protocol is only used when Pn700.2 is set to 1. There are two modes for MODBUS communication: ASCII (American Standard Code for information interchange) mode and RTU (Remote Terminal Unit) mode.

9.3.1 Code Meaning

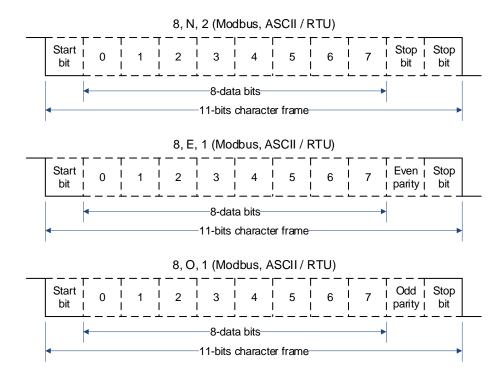
ASCII Mode

Every 8-bit data is consisted by two ASCII characters. For example: One 1-byte data $64_{\rm H}$ (Hexadecimal expression) is expressed as ASCII code '64', which contains '6' as ASCII code $36_{\rm H}$ and '4' as ASCII code $34_{\rm H}$.

ASCII code for number 0 to 9, character A to F are as follows:


Character	'0'	'1'	'2'	'3'	'4'	' 5'	' 6'	'7'
ASCII Code	30 _H	31 _H	32 _H	33 _H	34 _H	35 _H	36 _H	37 _H
Character	'8'	'9'	'A'	'В'	'С'	'D'	'Е'	'F'
ASCII Code	38 _H	39 _H	41 _H	42 _H	43 _H	44 _H	45 _H	46 н

RTU Mode


Every 8-bit data is consisted by two 4-bit hexadecimal data, that is to say, a normal hexadecimal data. For example: decimal data 100 can be expressed as $64_{\rm H}$ by 1-byte RTU data.

Data Structure

• 10bit character form (7-bit data)

• 11bit character form (8-bit data)

9.3.2 Communication Protocol Structure

ASCII Mode

STX	Start character': ' = > (3A H)		
ADR	Communication address = > 1-byte contains two ASCII codes		
CMD	Reference code = > 1-byte contains two ASCII codes		
DATA(n-1)			
	Data content = > n-word=2n-byte contain 4nASCII codes, n ≤ 12		
DATA(0)			
LRC	Checking code =>1-byte contains two ASCII codes		
End 1	End code $1 = > (0D_H)(CR)$		
End 0	End code $0 = > (0A_H)(LF)$		

RTU Mode

STX	Sleep interval of at least 4 bytes transmission time.			
ADR	Communication address = > 1-byte			
CMD	Reference code = > 1-byte			
DATA(n-1)				
	Data content = $>$ n-word=2n-byte, n \leq 12			
DATA(0)				
CRC	CRC checking code = > 1-byte			
End 1	Sleep interval of at least 4 bytes transmission time.			

Communication protocol data format instructions

- STX (communication start)
 - ASCII mode: ': 'character
 - RTU mode: Sleep interval of at least 4 bytes transmission time (automatically changed according to different communication speed).
- ADR (communication address)

Valid communication address: 1 to 254

For example: communicate with the servo drive which address is 32 (20 in hex):

- ASCII mode: ADR='2', '0'=>'2'=32 $_{\rm H}$, '0'=30 $_{\rm H}$
- RTU mode: ADR=20_H
- CMD (command reference) and DATA (data)

Data structure is determined by command code. Regular command code is shown as follows: Command code: 03H, read N words(word), $N \le 20$.

For example: read 2 words starting from $0070_{\rm \,H}$ from the servo drive which address is $01_{\rm \,H}$.

ASCII Mode				
Reference Informa	Reference Information		Response Informa	ation
STX	··.·		STX	··.·
100	'0'		ADD	' 0'
ADR	'1'		ADR	'1'
CMD	.0,		CMD	,0,
CMD	'3'		CMD	'3'
Data start address	.0,	_	Data number	,0,
	' 0'		(count as byte)	'4'
	'7'		Content of data start address 0200 H	,0,
	·0'			,0,
Data number	,0,			,0,
(count as word)	·0'			,0,
	·0'		Content of second data address 0201	,0,
	'2'			,0,
LRC checking	' 8'			,0,
	'A'			,0,
End 1	(0D _H)(CR)	=	LRC checking	'F'
End 0	(0A _H)(LF)			' 8'
		_	End 1	(0D _H)(CR)
			End 0	(0A _H)(LF)

RTU Mode					
Reference Information			Response Information		
ADR	01 н		ADR	01 н	
CMD	03 н		CMD	03 н	
Data start address	00 _H (high-bit)		Data number	0.4	
	70 _H (low-bit)		(count as byte)	04 н	
Data number	00 н]	Content of data start address 0200 H	00 _H (high-bit)	
(count as word)	02 н			00 _H (low-bit)	
CRC checking	C5 _H (low-bit)		Content of second	00 _H (high-bit)	
CRC checking	D0 _H (high-bit)		data address 0201 _H	00 _H (low-bit)	
		_	CRC checking	FA _H (low-bit)	
			CRC checking	33 _H (high-bit)	

For example: write $1(0001\,\mathrm{H})$ into $01\,\mathrm{H}$ servo address $0070\,\mathrm{H}$. Reference code: $06\,\mathrm{H}$, write in one word

ASCII Mode				
Reference Information		Response Information		
STX	"· "	STX ADR	STX	··: "
ADR	,0,		ADB	,0,
	'1'		'1'	
CMD	,0,		CMD Data number	,0,
	·6'			·6'
Data start address	' 0'			,0,
	' 0'	Content of data start address 0200 H	'4'	
	'7'			,0,
	' 0'			,0,
Data content	content '0'			'7'
	' 0'			,0,
LRC checking	' 0'			,0,
	'1'		data address 0201	,0,
	' 8'			' 0'
	' 8'			'1'
End 1	(0D _H)(CR)	LRC checking	' 8'	
End 0	(0A _H)(LF)		LIC CHECKING	. 8,
			End 1	(0D _H)(CR)
			End 0	(0A _H)(LF)

RTU Mode				
Reference Information			Response Information	
ADR	01 н		ADR	01 н
CMD	06 н		CMD	06 н
Data start address	00 _H (high-bit)		Data start address	00 _H (high-bit)
	70 _H (low-bit)			70 _H (low-bit)
Data content	00 _H (high-bit)		Data content	00 _H (high-bit)
	01 _H (low-bit)			01 _H (low-bit)
CRC checking	49 _H (low-bit)		CRC checking	49 _H (low-bit)
CRC checking	D1 _H (high-bit)		CRC checking	D1 _H (high-bit)

LRC (ASCII mode) and CRC (RTU mode) Error Detection Value Calculation

• LRC calculation in ASCII mode:

ASCII mode uses LRC (Longitudinal Redundancy Check) error detection value. The exceeded parts (e.g. the total value is $128_{\rm H}$ of hex, then take $28_{\rm H}$ only) is taken off by the unit of 256 in the total value from ADR to the last information, then calculate and compensate, the final result is LRC error detection value.

For example: read 1 word from $01\,\mathrm{H}$ servo address $0201\,\mathrm{H}$

STX	·. ·
ADR	,0,
ADK	' 1'
CMD	'0'
CMD	·3·
Data start address	'0'
	'2'
	,0,
	' 1'
	'0'
Data number (count	'0'
as word)	,0,
	'1'
LRC checking	·F'
	·8·
End 1	(0D _H)(CR)
End 0	(0A _H)(LF)

Add from ADR data to the last data.

$$01_{
m H}$$
 +03 $_{
m H}$ +02 $_{
m H}$ +01 $_{
m H}$ +00 $_{
m H}$ +01 $_{
m H}$ =08 $_{
m H}$

The compensate value is F8 H when 2 is used to compensate 08 H, so LRC is "F", "8".

• CRC calculation of RTU mode:

RTU mode uses CRC (Cyclical Redundancy Check) error detection value.

The process of CRC error detection value calculation is shown as follows:

Step 1: Load in a 16-bit register of FFFF H, named "CRC" register.

Step 2: Run XOR calculation between the first bit (bit 0) of instruction information and 16-bit CRC register's low bit (LSB), and the result is saved to CRC register.

Step 3: Check the lowest bit (LSB) of CRC register, if it is 0, CRC register moves one bit to right; if it is 1, CRC register moves one bit to right, then run XOR calculation with A001 H;

Step 4: Go to step 5 till the third step has been executed for 8 times, otherwise return to step 3.

Step 5: Repeat the steps from 2 to 4 for the next bit of instruction information, the comment of CRC register is the CRC error detection value while all the bits have been executed by the same way.

Example

After calculating out the CRC error detection value, the CRC low bit should be filled first in instruction information, and then fill the high bit of CRC. Refer to the following example.

Read 2 words from the $0101_{\rm H}$ address of $01_{\rm H}$ servo. The final CRC register content calculated from ADR to the last bit of data is $94_{\rm H}$, and then the instruction information is shown as follows. Please be sure that $94_{\rm H}$ is transmitted before $37_{\rm H}$.

ADR	01 н	
CMD	03 н	
Data start address	01 _H (high-bit)	
Data start address	01 _H (low-bit)	
Data number (count as	00 _H (high-bit)	
word)	02 _H (low-bit)	
CRC checking	94 _H (low-bit)	
CRC checking	37 _H (high-bit)	

End1, End0 (Communication is completed.)

- ASCII Mode:
 - Communication is ended with (0D H) [carriage return] and (0A H) [new line].
- RTII Mode

When the time exceeds the sleep interval by at least 4 bytes transmission time while in the current communication speed, it means the communication is finished.

9.3.3 Communication Error Disposal

Problems that occur during communication are a result of the following:

- Data address is incorrect while reading/writing parameters.
- The data is not within the parameter setting range while writing.
- Data transmission fault or checking code fault when communication is disturbed.

When the first and second communication faults occur, the servo drive is running normally, and will feed back an error frame.

When the third communication fault occurs, transmission data will be recognized as invalid to give up, and no error frame is returned.

The format of error frame:

Host controller data frame:				
start	Slave station address	Command	Data address, content	Checking
_	_	command	-	_

Servo drive feeds back error frame:					
start	Slave station address	Response code	Error code	Checking	

Servo drive feeds back error frame:				
-	_	Command + 80 _H	-	1

Error frame responses code=command+80 H;

Error code = 00 H: Normal communication

- = 01 H: Servo drive cannot identify the required functions
- = $02 \, \text{H}$: The required data address does not exist in the servo drive
- = 03 H: The required data in servo drive is not allowed (beyond the maximum or minimum value of the parameter)
 - = $04 \, \text{H}$: Servo drive starts to perform the requirement, but cannot achieve it.

For example: Servo drive axis number is $03_{\rm H}$, write data 5000 into parameter Pn102 is not allowed, because the range of parameter Pn102 is $1\sim4000$. The servo drive will feedback an error frame, the error code is $03_{\rm H}$ (beyond the parameter's maximum value or minimum value). The structure is as follows:

Host controller data frame				
start	Slave station address	Command	Data address, content	Checking
-	03 _H	06н	0066н 1388н	-

Servo drive feedback error frame:				
start	Slave station address	Response code	Error code	Checking
_	03 _H	86 _H	03 _H	_

Besides, if the data frame sent from host controller slave station address is 00_H , it determines the data to be broadcast data. The servo drives will not feedback any frames.

9.3.4 Data Communication Address of Servo State

Data Address	Meaning	Description	Operation
01F0 ~ 0B47	Parameter area	Corresponding parameters in parameter list	Read/write
1011 ~ 101A	Alarm information memory area	Ten alarms historical record	Read only
0F00	Virtual DI input		Read/write
0E8C	DI status	Un005	Read only
0E8D	TouchProbe input status	Un006	Read only
0E8E	DO status	Un007	Read only

Data Address	Meaning	Description	Operation
0E86	Speed feedback	Un000	Read only
0E87	Speed setting	Un001	Read only
0E88	Input torque reference percentage	Un002	Read only
0E89	Internal torque reference percentage	Un003	Read only
0E8A ~ 0E8B	Encoder rotation pulse number	Un004	Read only
0E8F	Pulse setpoint of 1ms	Un008	Read only
0E90 ~ 0E93	Current position	Un009	Read only
0E94 ~ 0E97	Deviation pulse counter	Un011	Read only
0E98 ~ 0E9B	Given position	Un013	Read only
0E9C	Percentage of load inertia	Un015	Read only
0E9D	Motor overload ratio	Un016	Read only
0EAD	Servo current alarm number		Read only
0F3A	Encoder multi-turn information		Read only
0F3B ~ 0F3C	Encoder single-turn information		Read only
1021	Clear historical alarms		Write only
1022	Clear current alarms		Write only
1040	Clear encoder alarm		Write only
1041	Clear encoder multi-turn data		Write only

Servo Parameter Area

The Pn parameter of corresponding servo. Pn parameter is 32bit, formed by splicing two consecutive hexadecimal data addresses (low- and high-bit). When reading and writing, operate the low-bit first, then high-bit.

For the start parameter Pn000, the low-bit address is $01F0_H$, and the high-bit address is $01F1_H$.

For other parameters Pnx, the low-bit address is $01F0_H+x*2$, and the high-bit address is $01F1_H+x*2$.

For example: when writing to Pn000, the data written is 1; write 1 to $01F0_H$ first, and then write 0 to $01F1_H$.

Alarm Information Storage Area

Historical Alarm Number	Description	Communication Address
0	Historical alarm 1 (the latest alarm)	1101 _H

Historical Alarm Number	Description	Communication Address
1 ~ 8	Historical alarms 2 ~ 9	1102 _H ~ 1109 _H
9	Historical alarm 10 (the furthest alarm)	101A _H

Chapter 10 Alarm Displays

10.1 Alarm Classifications

There are three classifications of alarms for the Drive: Gr.1, Gr.2, and Warning. They will affect the display and operation for the Servo System.

Classification	Stopping Method	Panel Display
Gr.1	Stops the Motor according to the setting of Pn003.0. For details, refers to 5.4.1 Motor Stop Methods for Gr.1 Alarms, Safety State and Servo OFF.	The Panel Operator displays between Alarm No and Servo state FLT by turns. Display
Gr.2	Stops the Motor according to the setting of Pn004.0 For details, refers to 0	by turns
Warning	Do not stop the Motor, and keep the current operation	The Panel Operator displays between Alarm No and Servo state run by turns. Display by turns

10.2 Alarm Detailed

10.2.1 Gr.1 Warning

A.01: Parameter destruction

Possible causes	Confirm the method	Action
The supply voltage drops instantaneously	Measure the supply voltage.	The supply voltage is set within the specification range and the initialization of the parameter setpoint is performed.
Parameters are written to interrupt power	Confirm the time of the power outage.	Re-write the parameter after restoring the factory value of the parameter (Fn001).
Malfunction due to noise	Confirm the runtime environment.	Take anti-interference countermeasures and then power the drive back in.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.03: Motor overspeed

Possible causes	Confirm the method	Action
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.
The instruction input value exceeds the overspeed value	Confirm the input instruction.	Lower the instruction value, or adjust the gain.
The motor speed exceeds the maximum speed	Confirm the waveform of the motor speed.	Reduce the speed command input gain or adjust the setting of the Pn323 (Overspeed Alarm Detection Threshold).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	It may be a drive failure. Replace the drive.

A.04: Overload

Possible causes	Confirm the method	Action
Motor wiring, encoder wiring, or poor connection	Confirm the wiring.	Check whether there is a problem with the motor wiring and encoder wiring.
The motor runs beyond the overload protection characteristics	Confirm the overload characteristics and operating instructions of the motor.	Revisit load conditions and operating conditions. Or revisit the motor capacity.
Due to mechanical factors, the motor is not driven, resulting in excessive load during operation	Confirm the operating instructions and motor speed.	Improve mechanical factors.

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.05: The position deviation counter overflows

Possible causes	Confirm the method	Action
The wiring of the motor U, V, W is incorrect	Confirm the wiring of the motor main circuit cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Position commands are too fast	Try lowering the position command speed before running.	Lower the position command speed or command acceleration, or adjust the electronic gear ratio.
The position instruction accelerates too much	Try slowing down the instruction acceleration before running.	With the EtherCAT command, the position command acceleration is reduced.
Deviation counter overflow alarm (Pn504) is low relative to operating conditions	Confirm that the position deviation counter overflow alarm (Pn504) is appropriate.	Correctly set the value of the parameter Pn504.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.06: The position deviation pulse overflows

Possible causes	Confirm the method	Action
Servo ON is maintained when the position deviation in servo OFF exceeds the setpoint of (Pn504× electronic gear).	Confirm the amount of positional deviation when servo OFF.	Set the correct deviation counter overflow alarm (Pn504) when servo ON.

A.07: The electronic gear setting or pulse frequency is unreasonable

Possible causes	Confirm the method	Action
The setting of the electronic gear ratio: Pn725/Pn726 (6093-01h/6093-02h) is not within the set range	Confirm that the electronic gear ratio is within a reasonable range	The setting range of the electronic gear ratio depends on the number of encoder bits: Encoder bits ≤ 20, set range: [0.001, 4000] Encoder bits ≤ 21, set range: [0.001, 8000] Encoder bits ≤ 22, set range: [0.001, 16000] Encoder bits ≤ 23, set range: [0.001, 32000] Encoder bits ≤ 24, set range: [0.001, 64000]

A.08: There is a problem with the first channel of current detection

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.09: There is a problem with the second channel of current detection

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.12: Overcurrent

Possible causes	Confirm the method	Action
The main circuit cable is wired incorrectly, or the contact is poor	Confirm that the wiring is correct.	Modify the wiring.
The main loop cable is shorted internally or a short-to-ground circuit has occurred	Confirm whether a short circuit has occurred between the UVW phases of the cable and between the UVW and the ground.	There is a possibility that the cable will be short-circuited. Replace the cable.
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground.	It is possible that the motor is faulty. Replace the motor.
A short circuit or short-to-ground circuit occurs inside the drive	Confirm whether a short circuit has occurred between the UVW phases of the motor connection terminals of the drive and between the UVW and the ground.	It may be a drive failure. Replace the drive.
The braking resistor is wired incorrectly or has poor contact	Confirm that the wiring is correct.	Modify the wiring.
Dynamic brakes (emergency stops due to DB or drives) are used frequently, or DB brake circuit damage alarms occur	The DB usage frequency is confirmed by the DB resistor power dissipation. Or use the alarm display to confirm if damage to the DB braking circuit (A.1B) has occurred.	变更驱动器的选型、运行方法和 机构,以降低 DB 的使用频率。
Exceeds the braking capacity	Confirm how often the braking resistor is used.	Change the selection, operating method, and mechanism of the drive to reduce the frequency of DB usage.
The braking resistance value of the drive is too small	Confirm how often the braking resistor is used.	Change the braking resistance value to a value above the minimum allowable resistance value of the drive.

Possible causes	Confirm the method	Action
High loads are tolerated when the motor is stopped or when running at low speeds	Confirm that the operating conditions are outside the specification range of the servo drive.	Reduce the load on the motor. Or run at a higher operating speed.
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Take anti-interference measures, such as correct wiring of FG. In addition, please use a wire with the same size as the driver main circuit wire for the FG wire size.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.13: Overvoltage

Possible causes	Confirm the method	Action
The supply voltage is out of specification	Measure the supply voltage.	Adjust the AC/DC supply voltage to the product specifications.
The power supply is in an unstable state or has been affected by lightning strikes	Measure the supply voltage.	Improve power conditions and power the drive again after setting the surge suppressor. When an alert still occurs, it may be a drive failure. Replace the drive.
Acceleration and deceleration occur when the AC supply voltage exceeds the specification range	Confirm the supply voltage and speed and torque during operation.	Adjust the AC supply voltage to the product specifications.
The external braking resistance value is larger than the operating conditions	Confirm the operating conditions and braking resistance values.	Considering the operating conditions and loads, the braking resistance value is revisited.
Operates above the allowable moment of inertia or mass ratio	Confirm that the moment of inertia or mass ratio is within the allowable range.	Extend the deceleration time or reduce the load.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.14: Undervoltage

Possible causes	Confirm the method	Action
The supply voltage is below specification	Measure the supply voltage.	Regulate the supply voltage to the normal range.
The supply voltage drops during operation	Measure the supply voltage.	Increase the power supply capacity.

Possible causes	Confirm the method	Action
An instantaneous power outage occurs	Measure the supply voltage.	If the instantaneous stop hold time (Pn538) is changed, it is set to a smaller value.
The fuse of the drive is blown	-	Replace the drive, connect the reactor to the DC reactor connection terminals (P1, P2), and use the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.16: Regeneration abnormalities

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	After connecting the external braking resistor, set Pn535 and Pn536 to the appropriate values.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.18: The module is overheating

Possible causes	Confirm the method	Action
The ambient temperature is too high	Measure the ambient temperature with a thermometer. Or confirm health through drive provisioning environment monitoring.	Improve drive setup conditions and reduce ambient temperature.
The overload alarm was reset several times by powering it off and then running	Use the alert display to confirm if an overload alert has occurred.	Change the reset method for the alert.
The load is too heavy, or the regeneration capacity is exceeded during operation	The load in operation is confirmed by the cumulative load rate, and the regenerative processing capacity is confirmed by the regenerative load rate.	Revisit load conditions and operating conditions.
The orientation of the drive and the spacing from other drives are unreasonable	Confirm the setup status of the drive.	Install according to the installation standards of the drive.

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1D: The temperature sensor is disconnected

Possible causes	Confirm the method	Action
The ambient temperature is too high	Measure the ambient temperature with a thermometer. Or confirm health through drive provisioning environment monitoring.	Improve drive setup conditions and reduce ambient temperature.
The overload alarm was reset several times by powering it off and then running	Use the alert display to confirm if an overload alert has occurred.	Change the reset method for the alert.
The load is too heavy, or the regeneration capacity is exceeded during operation	The load in operation is confirmed by the cumulative load rate, and the regenerative processing capacity is confirmed by the regenerative load rate.	Revisit load conditions and operating conditions.
The orientation of the drive and the spacing from other drives are unreasonable	Confirm the setup status of the drive.	Install according to the installation standards of the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1E: The main charge circuit is faulty

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	After connecting the external braking resistor, set Pn535 and Pn536 to the appropriate values.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
The external regenerative resistance value or regenerative resistance capacity is insufficient, or it is in a continuous regeneration state	Again, the operating conditions or capacity are confirmed.	Change the regeneration resistance value and regenerative resistance capacity. Adjust the operating conditions again.

Possible causes	Confirm the method	Action
Continuously bear negative loads and are in a state of continuous regeneration	Confirm the load applied to the motor in operation.	Revisiting the system, which includes servo, mechanical, and operating conditions.
The capacity set in Pn536 (discharge resistor power) is less than the capacity of the external regenerative resistor	Confirm the connection of the regenerative resistor and the value of Pn536.	Corrects the setpoint of Pn536.
The value set in Pn535 (Discharge Resistor Resistance) is less than the external regenerative resistance value	Confirm the connection of the regenerative resistor and the value of Pn535.	Corrects the setpoint of Pn535.
The external regeneration resistance value is too large	Confirm that the regeneration resistance value is correct.	Change it to the correct resistance value and capacity.
Drive failure	Confermtat Tregnatien Rescisteins Valleus Correcht.	Replace the drive.

A.1F: Short-to-ground fault

Possible causes	Confirm the method	Action
The motor cable has a short-circuit to ground	Confirm if a short circuit has occurred between the UVW of the cable and the ground.	There is a possibility that the cable will be short-circuited. Replace the cable.
A short-to-ground circuit has occurred inside the drive	Confirm whether a short circuit has occurred between the UVW and the ground of the motor connection terminal of the drive.	It may be a drive failure. Replace the drive.

A.24: The main loop power supply is wired incorrectly

Possible causes	Confirm the method	Action
A single-phase AC power supply input (Pn007.1 = 0) is not set and a single-phase power supply is entered	Confirm power and parameter settings.	Set the correct power inputs and parameters.

A.37: Control panel communication timed out

Possible causes	Confirm the method	Action
Poor connection between the operator panel and the drive	Confirm the contact of the connector.	Reinsert the connector. Or replace the cable.
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Keep the operator panel body or cable away from devices/cables that are generating noise interference.
Operator panel failure	Connect the operator panel again. When an alarm still occurs, it is possible that the operator panel is malfunctioning.	Replace the operator panel.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.42: The motor power does not match the drive power

Possible causes	Confirm the method	Action
The drive capacity does not match the capacity of the motor	The drive capacity must be the same as the motor capacity.	Match the capacity of the drive to the motor.
Encoder failure	After replacing the encoder, confirm that the alarm no longer occurs.	Replace the motor (encoder).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.43: The encoder type is incorrect

Possible causes	Confirm the method	Action
Encoder failure	After replacing the encoder, confirm that the alarm no longer occurs.	Replace the motor (encoder).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.45: Multi-turn data error

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below the specified value	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.46: Multi-turn data overflow

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
Multiple laps of data have overflowed	_	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.47: The absolute encoder battery voltage is too low

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 2.45V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.48: Absolute encoder battery voltage undervoltage

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 3.0V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.49: Multiple or singleturn data anomalies were detected

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 3.0V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.50: The encoder is disconnected

Possible causes	Confirm the method	Action
The encoder cable is wired incorrectly	Confirm the wiring of the motor encoder cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Adopt anti-interference countermeasures.
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor is malfunctioning.	Replace the motor.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.51: Absolute encoder overspeed detection

Possible causes	Confirm the method	Action
When the control power is turned on, the motor rotates at a speed of more than 200 rpm	The speed of the motor is confirmed by the speed of the motor when the power is turned on.	Adjust the motor speed to less than 200 rpm and turn on the control power.
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.52: An error occurred inside the encoder

Possible causes	Confirm the method	Action
Encoder-related alarms have not been reset	Resets the encoder-related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.53: Error encoder lap information

Possible causes	Confirm the method	Action
Encoder-related alarms have not been reset	Resets the encoder-related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.54: Errors occurred at the check digits and cutoff bits in the encoder control domain

Possible causes	Confirm the method	Action
Encoder-related alarms have not been reset	Resets the encoder-related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.58: Information such as encoder zone phase is empty or incorrect

Possible causes	Confirm the method	Action
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.

A.59: Information such as the motor body in the second area of the encoder is empty or wrong

Possible causes	Confirm the method	Action
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.

A.65: Location overflow alarm

Possible causes	Confirm the method	Action
The wiring of the motor U, V, W is incorrect	Confirm the wiring of the motor main circuit cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Position commands are too fast	Try lowering the position command speed before running.	Lower the position command speed or command acceleration, or adjust the electronic gear ratio.
The position instruction accelerates too much	Try to reduce the acceleration of the command before running.	With the EtherCAT command, the position command acceleration is reduced.
Deviation counter overflow alarm (Pn504) is low relative to operating conditions	Confirm that the position deviation counter overflow alarm (Pn504) is appropriate.	Correctly set the value of the parameter Pn504.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.70: DC synchronization error

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication.	_	Reboot the drive to re-establish EtherCAT communication.

A.71: SM Event synchronization event premature

Possible causes	Confirm the method	Action
EtherCAT communication error due to noise.	-	Check the EtherCAT wiring and implement noise countermeasures.
The controller does not update process data during a fixed period of time.	Examine the process data specified by the controller.	Modify the controller's configuration so that it can update process data during a fixed period.

Possible causes	Confirm the method	Action
The EtherCAT communication cable or connector wiring is faulty.	Check the EtherCAT communication cables and connector wiring.	Modify the wiring.

A.72: SM Event synchronization event timed out

Possible causes	Confirm the method	Action
EtherCAT communication error due to noise.	-	Check the EtherCAT wiring and implement noise countermeasures.
The controller does not update process data during a fixed period of time.	Examine the process data specified by the controller.	Modify the controller's configuration so that it can update process data during a fixed period.
The EtherCAT communication cable or connector wiring is faulty.	Check the EtherCAT communication cables and connector wiring.	Modify the wiring.

A.73: EtherCAT processor internal error

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.74: The position is set in the Cubic interpolation algorithm with a period error

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication	_	Reboot the drive to re-establish EtherCAT communication.

A.75: There was an error setting for the synchronization period

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication	_	Reboot the drive to re-establish EtherCAT communication.
The setting of object 60C2 is not an integer multiple of 125µs	Check the setpoint of object 60C2	Correctly set object 60C2.

A.76: The acceleration object is set to 0 in PP/PV mode

Possible causes	Confirm the method	Action
The setpoints for objects 6083, 6084, 6085 are incorrect	The setpoints for objects 6083, 6084, 6085 (not 0).	Correctly set objects 6083, 6084, 6085.

A.77: OP mode process data watchdog communication timed out

Possible causes	Confirm the method	Action
Detects whether the master controller sends process data properly	The data transmission interval is detected by the wireshark packet capture software	Reboot the drive to re-establish EtherCAT communication.
Whether the network cable is loose	Check whether the network cable is plugged in tightly	Reseat the network cable

A.81: The motor UVW wiring is wrong

Possible causes	Confirm the method	Action
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground	It is possible that the motor is faulty. Replace the motor.
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.

A.82: The motor type does not match

Possible causes	Confirm the method	Action
The drive capacity does not match the capacity of the motor	The drive capacity must be the same as the motor capacity.	Match the capacity of the drive to the motor.

A.83: The motor is operating abnormally

Possible causes	Confirm the method	Action
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground.	It is possible that the motor is faulty. Replace the motor.

Possible causes	Confirm the method	Action
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.

A.F0: Internal logic exceptions

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

Gr.2 Alarm

A.15: The regenerative resistance is damaged

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	Aft Connell Tinte Externard Brakin Recisto, Setben 535 Anderben 536 Tot Aproprit Valluet.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1A: The charging resistance is overloaded

Possible causes	Confirm the method	Action
The input power supply is unstable	Measure and confirm the status of the input power supply.	Ensure that the input power supply is stable.
Power is turned on and off too frequently	_	Extend the interval between power on and off or reduce the frequency of power on and off.

A.1B: The DB braking circuit is damaged

Possible causes	Confirm the method	Action
The motor is driven by an external force	Confirm the health status.	Do not drive the motor by external force.
The rotational or running energy at the time the DB is stopped exceeds the capacity of the DB resistance	The DB usage frequency is confirmed by the DB resistor power dissipation.	Try the following measures. Reduce the command speed of the motor. Adjust the moment of inertia or mass ratio. Reduce the number of DB stops.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.20: The main loop power line is out of phase

Possible causes	Confirm the method	Action
Poor wiring of three- phase wires	Confirm the power wiring.	Confirm if there is a problem with the power wiring.
The three-phase power supply is unbalanced	Measure the voltage of each phase of a three-phase power supply.	Corrects the imbalance of the power supply (reversing phase).
A single-phase AC power supply input (Pn007.1 = 0) is not set and a single-phase power supply is entered	Confirm power and parameter settings.	Set the correct power inputs and parameters.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.33: USB Power Supply Exceptions

Cause	Way of confirmation	Solution
USB cable is damaged	Confirm USB cable	Replace the USB drive
Drive failure	If the alarm still occurs when the USB cable is replaced, the drive may be faulty	Replace the drive

A.49: Multi-turn or Single-turn Data Exception Detected

Cause	Way of confirmation	Solution
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly
Battery voltage below 3.0V	Measure the battery voltage	• Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".

Cause	Way of confirmation	Solution
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

A.4A: Excessive Encoder Temperature

Cause	Way of confirmation	Solution
High ambient temperature of the motor	Measure the ambient temperature of the motor.	Adjust the ambient temperature of the motor to below $40 \mathbb{C}$.
Motor running at a load in excess of the rated value	Confirm load by cumulative load factor.	Adjust the load of the motor before running to a value within the rated value.
Encoder failure	Re-apply power to the drive. If the alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

10.2.3 Warnings

A.1C: Fan Disconnection Alarm

Cause	Way of confirmation	Solution
Fan is disconnected	Confirm if the fan is working	Confirm if the internal fan is wired correctly
Fan is damaged	Fan does not work even after correct wiring	Replace the drive

A.33: USB Power Supply Exceptions

Cause	Way of confirmation	Solution
USB cable is damaged	Confirm USB cable	Replace the USB drive
Drive failure	If the alarm still occurs when the USB cable is replaced, the drive may be faulty	Replace the drive

A.49: Multi-turn or Single-turn Data Exception Detected

Cause	Way of confirmation	Solution
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly

Cause	Way of confirmation	Solution
Battery voltage below 3.0V	Measure the battery voltage	• Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

A.4B: Absolute Encoder Battery Undervoltage (Tamagawa)

Cause	Way of confirmation	Solution	
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly	
Battery voltage below 3.0V	Measure the battery voltage	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".	
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.	

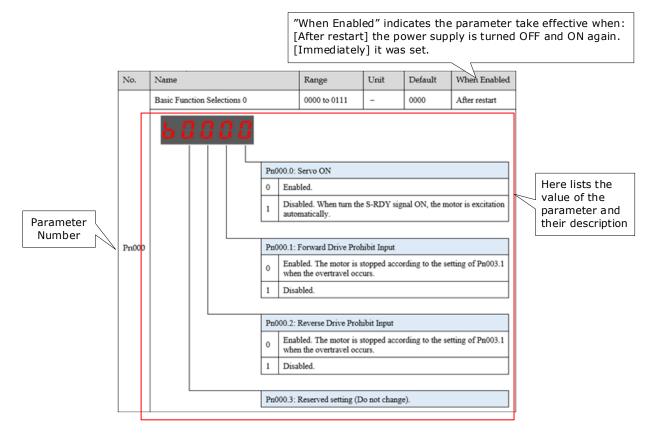
A.D5: Fan Disconnection Warning

Cause	Way of confirmation	Solution
Poor fan wiring	Confirm if the fan is working	Confirm if the internal fan is wired correctly

A.D7: Warning for Reaching Soft Limit Positive Limit

Cause	Way of confirmation	Solution
The current position of the motor is outside the limits in this mode	Compare the current motor position Un009 with the position limits (Pn325,Pn325) to determine if the limits are exceeded	Enabling servo into the limits

A.D8: Warning for Reaching Soft Limit Reverse Limit


Cause	Way of confirmation	Solution
The current position of the motor is outside the limits in PCP mode	Compare the current motor position Un009 with the position limits (Pn325,Pn325) to determine if the limits are exceeded	Enabling servo into the limits

A.D9: Origin Error Warning

Cause	Way of confirmation	Solution
Loss of stored origin	Confirm if the origin values stored in Un035 and Un036 are correct	1. When Pn689.2 = 1, switch on the Storing Origin function 2. Use multiturn encoder. 3. When Pn002.2=1, use the multiturn encoder as absolute

Chapter 11 Parameters

11.1 Interpreting the Parameter Lists

11.2 Parameters Detailed

No.	Index		Name	Range	Unit	Default
	Basic Function Selections 0		b0000 to b0111	_	b0000	After restart
Pn000	5000	Pn 0 1	ON automatical 000.1: Forward Dr	disabled. Servo is after S/RDY is ive Prohibit Input enabled.	output.	
		Pn	000.2: Reverse Dri			
	External N-OT enabled. Operate in the time sequence setting in Pn004.0 who occurs.			hen travel limit		
	1 Disabled.					
			•			
	Pn000.3: Reserved setting (Do not change).					

No.	Index		Name	Range	Unit	Default	
	Reserved setting (Do not change	e).	b0000 to b1111	_	b0000	After restart	
Pn001	5000	0	CCW, counter-clockwise rotation in the positive direction CW, clockwise rotation in the positive direction CW, clockwise rotation in the positive direction n001.1: Analog Speed Limit Enabled Sets the value of Pn406 as the speed limit value during torque control. Use the smaller of the speed value corresponding to the analo voltage input by Tref and the set value of Pn406 as the speed limit value during torque control.				
		Pn(001.2: Analog Tor	que Limit Enabled	i		
		0	Sets Pn401~Pn	404 as torque limi	t.		
	Sets the value corresponding to Tref input analog volumit.			oltage as torque			
		Pn(001.3: 2nd Electron	nic Gear Enabled			
		0	2nd electronic g	gear is disabled, Po	CON signal is used	d to switch P/PI	
	2nd electronic gear is enabled, PCON signal is only us electronic gear.					ly used as 2nd	

No.	Index	Name	Range	Unit	Default
	Application Function Selections 2	b0000 to b0100	-	ь0000	After restart
Pn002	P E	Alarm A.48 voltage is beloved voltage is beloved voltage is beloved and voltage is beloved and voltage is belowed as a voltage is below as a voltage	of Alarm Mechanoccurs when Tamow 3.0V occurs when Tamow 3.0V, and Alarow 3V during normal behavior as an absolute error as an incremental	anism for Tama	encoder battery
	Р	Pn002.3: Reserved setting (Do not change).			

No.	Index	Name	Range	Unit	Default
	Application Function Selections 3	h0000 to h1032	_	h0000	After restart
Pn003	F C 1 2 3	DB braking sto Stops freely and Pn003.1: Motor Stopp DB brake stops Stops freely and Reverse braking	ynamic brake and ps and stays DB a d remains free after ping Method for C , and remains free d remains free after g stops, and maint g stops, and remai	then let the Motor fter stop er stopping Overtravel after stopping er stopping ains zero clamp at	coast.
	_	2n003.3: Overload En	nhancement		
	0				
	1	instantaneous n		enhance the Mo rated load, which nt start and stop.	

No.	Index	Name	Range	Unit	Default
	Application Function Selections 4	h0000 to h3425	_	h0000	After restart
	XOOOO	motor will be find Motor is running Servo OFF: mooccurs: Reverse Servo OFF: mooccurs: Reverse Servo OFF: dyn When overtraventers the zero	by dynamic brakeree; ag freely until it structor stopped by de braking stops. tor is running free braking stops. mamic brake stopped occurs: Reverse	ops. Iynamic brake. Wely until it stops. Wel. se braking stops	Then overtravel Then overtravel and the motor
Pn004	P 0 1 2	Reserved settin	then Servo is OFF g (Do not change) when Servo is	or STO is availab	ole.
		Overtravel is or	ccurred.		
	P	n004.2: Reference p	oulse form		
	0	SIGN + PULS			
	1	CW + CCW			
	2	$A + B(\times 1)$			
	3	` '			
	4	$A + B (\times 4)$			
	P	n004.3: Inverses pul	lse		
	0		ULS reference and S	SIGN reference.	
	1	Do not inverse P	ULS reference; Inve	erses SIGN reference	2.
	2 Inverse PULS reference; Do not inverse SIGN reference.				
	3	Inverse PULS re	ference and SIGN re	eference.	
Pn005	Application Function Selections 5	h0000 to h33D3	_	h0010	After restart

Pn005.0: Internal Torque Feedforward Method			
Use the general internal torque feedforward.			
1 Reserved.			
2 Use the high-speed internal torque feedforward.			
3 Reserved.			

Pn00	5.1: Local Control Method
0	Speed control (analog reference): use PI control when PCON is OFF, and use P
U	control when PCON is ON.
1	Position control (pulse train reference): use PI control when PCON is OFF, and use
	P control when PCON is ON.
2	Torque control: PCON is invalid.
3	Speed control (contact reference) ↔ speed control (zero reference): switch to the
	speed control (zero reference)when PCON, PCL and NCL are OFF
4	Speed control (contact reference) ↔ speed control (analog reference): switch to the
·	speed control (analog reference) when PCON, PCL and NCL are OFF.
	Speed control (contact reference) ↔ position control (pulse train reference): switch
5	to the position control (pulse train reference) when the PCON, PCL and NCL
	signals are OFF.
	Speed control (contact reference) ↔ Torque control (analog reference): switch to
6	the torque control (analog reference) when the PCON, PCL and NCL signals are
	OFF.
	Position control (pulse train reference) ↔speed control (analog reference): when
7	PCON is OFF, position control (pulse train reference) is valid; when PCON is ON,
	speed control (analog reference) is valid.
	Position control (pulse train reference) ↔ Torque control (analog reference): When
8	PCON is OFF, position control (pulse train reference) is valid; when PCON is ON,
	torque control is valid.
	Torque control (analog reference) ↔ speed control (analog reference): When PCON
9	is OFF, torque control is valid; when PCON is ON, speed control (analog reference)
	is valid.
Α	Speed control (analog reference) ↔zero clamp control: When PCON is OFF, speed
71	control (analog reference) is valid; when PCON is ON, zero clamp control is used.
	Position control (pulse train reference) ↔Position control (pulse prohibited): When
В	PCON is OFF, position control (pulse train reference) is valid; when PCON is ON,
	position control (pulse prohibited) is valid.
С	Position control (PCP control)
D	Speed control (parameter reference): PCON is invalid.

Pn005	Pn005.2: Torque Feedforward Method							
0	Use the internal torque feedforward.							
1	Use the model following control torque feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.							
2	Controller setting speed feed-forward: valid in bus control mode, and set by object 0x60B1.							
3	Speed feed-forward generated by the Cubic interpolation algorithm: valid after the Cubic interpolation algorithm is selected through the object 0x60C0 in bus control mode.							

	Pn005.3: Speed Feedforward Method							
L	0	Use the internal speed feedforward.						
	1	Use the model following control speed feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.						
	2	Controller setting speed feed-forward: valid in bus control mode, and set by object 0x60B1.						
	3	Speed feed-forward generated by the Cubic interpolation algorithm: valid after the Cubic						

No.	Index	1	Name	Range	Unit	Default			
	interpolation algorithm is selected through the object 0x60C0 in bus control mode.								
	Application Function Selections	5 h	n0000 to h0001	_	h0000	After restart			
		Pn00	06.0: Bus Selection	on e control mode viz	a Pn005.1				
Pn006		1	CANOpen						
		Pn0	06.1: Reserved se	tting (Do not char	ıge).				
		Pn00	06.2: Reserved se	tting (Do not char	ige).				
		D 0	060 D						
Pn006.3: Reserved setting (Do not change).									
	Application Function Selections	7 h	n0000 to h1120	_	h0000	After restart			
	68888	Pn0	07.0: Reserved se	tting (Do not char	nge).				
			07.1: Power Supp	-					
Pn007		0	Single-phase A Three-phase A						
PNOO7		2	DC						
			<u>l</u>						
		Pn0	07.2: Torque Lim	it Action When U	ndervoltage Occu	rs			
		0	Disabled.						
		1	Enabled.						
		D-O	07.2. A.C. C1	Eroguer					
	l F	0	07.3: AC Supply 50Hz	rrequency					
		1	60Hz						
			1						

No.	Index	Name	Range	Unit	Default					
D 000	Initial Display Selection When Power On	0 to 9999	-	9999	After restart					
Pn008	Set the displayed Un Number when power on the device. For example, set this parameter to 0, the display is Un000 after powering on the device.									
	Application Function Selections 9	h0000 to h0001	_	h0000	After restart					
Pn009	P1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n009.0: Shared DC Disabled. Enabled.	Bus Function							
		n009.1: Reserved se								
	Pn009.3: Reserved setting (Do not change).									
	Application Function Setting 10	h0000 ~ h0001	0000	_	After restart					
Pn010	H		Synchro function							
		Enabled Gantry	Synchro function							
	P	n010.1: Reserved								
	Pn010.2: Reserved									
	P	n010.3: Reserved								

No.	Index	Name	Range	Unit	Default		
Pn011	Application Function Setting 11	0000 ~ 0001	0000	_	After restart		
	HIIII P 0	Pn011.0: Gantry Synchro Homing Done Sign O Homing not done					
	P						
	Р	n011.2: Reserved					
	P	Pn011.3: Reserved					
Pn012	Open Threshold of Synchronous Adjustment	0 ~ 10000	pulse	0	After restart		
111012	-						
Pn013	Alarm Threshold for Excessive Position Error	0 ~ 65535	pulse	10000	After restart		
	_						

No.	Index	Naı	me	Rar	nge	Unit	Default
	Application Function Setting 14	·	h0000 ~ h003	10	_	h0000	After restart
	XIIII	Pn014.0): Reserved				
Pn014			1: PCP Control	l IO T	Trigger Mode	2	
			dge				
		l L	evel				
	I	Pn014.2	2: PCP Control	l Con	tact 0 Trigge	r Invalid	
) C	ontact 0 can be	trigg	gered		
		l C	ontact 0 canno	t be t	riggered		
	I	Pn014.3	3: Reserved				
Pn015	Application Function Setting 15		h0000 ~ h00	01	0000	_	After restart
	HUUGU						
			0: Soft Limit E nder the PCP f				
		l No	on-enabling the	e soft	-limit function	on	
		2 Er	nabling the soft	limi	t function		
	I	1: Reserved					
	Pn015.2: Auto Vibration Suppression Selection						
	F	Pn015.3: Auto-tuning Type Selection (valid when Pn100.0 = 3)					0 = 3)
	Application Function Setting 100		h0001 ~ h110	05	_	h0001	After restart

No.	Index		Name	Range	Unit	Default	
		1 2 3 4	percentage of loa Reserved	ter auto-tuning ad inertia Pn106)	rection (requires setting		
Pn100		Pn1 0 1	inertia Pn106) 100.1: Reserved 100.2: Auto Vibrat Not used used	ion Suppression S	election		
		0	Standard: short p		out prone to oversl		
		1	Stable: smooth p	oositioning, but lo	ng positioning tim	es	
	Servo Rigidity Setting		0 ~ 500	Hz	40	Immediately	
Pn101	This parameter determines the rather than the performance can be improved.	_				rs.	
D 402	Speed Loop Gain		1 to 10000	rad/s	500	Immediately	
Pn102	This parameter determines the bandwidth of the speed loop.						
Pn103	Speed Loop Integral Time		1 to 5000	0.1ms	125	Immediately	
111103	Reduce this value can shorten p	ositio	oning time and spe	ed response time.		,	
	Position Loop Gain		0 to 1000	1/s	40	Immediately	
Pn104	This parameter determines the l Increase this value can improve		_	_	ne system vibrates		

No.	Index	Name	Range	Unit	Default				
	Torque Reference Filter Time	0 to 2500	50	0.01ms	Immediately				
Pn105	This parameter determines the bandwidth of torque reference filter, the filter is used to filter out the noise in torque reference.								
Pn106	Load Inertia Percentage	0 to 9999	%	0	Immediately				
111100	This value should be set to the pero	centage of load inert	ia and Motor iner	tia.					
D 405	Second Speed Loop Gain	1 to 10000	rad/s	250	Immediately				
Pn107	-								
Pn108	Second Speed Loop Integral Time	1 to 5000	rad/s	200	Immediately				
	-								
D 100	Second Position Loop Gain	0 to 1000	1/s	40	Immediately				
Pn109									
Pn110	Second Torque Reference Filter Time	0 to 2500	0.01ms	100	Immediately				
	-								
	Speed Feedforward	0 to 100	%	0	Immediately				
Pn112	This value is a percentage of the internal speed feedforward. This value is available when the internal speed feedforward is selected (Pn005.3=0).								
	Speed Feedforward Filter Time	0 to 640	0.1ms	0	Immediately				
Pn113	This parameter determines the bandwidth of internal speed feedforward filter. The filter is used to filter out the noise in internal speed feedforward.								
	Torque Feedforward	0 to 100	%	0	Immediately				
Pn114	This value is a percentage of the internal torque feedforward. This value is available when the internal torque feedforward is selected (Pn005.2=0).								
	Torque Feedforward Filter Time	0 to 640	0.1ms	0	Immediately				
Pn115	This parameter determines the bandwidth of internal torque feedforward filter. The filter is used to filter out the noise in internal torque feedforward.								

No.	Index	Name	Range	Unit	Default				
	P/PI Switch Mode	0 to 4	_	0	After restart				
Pn116	 [0] Use torque reference as the condition (threshold setting: Pn117). [1] Use position deviation counter as the condition (threshold setting: Pn118). [2] Use acceleration reference as the condition (threshold setting: Pn119). [3] Use the speed reference as the condition (threshold setting: Pn120). [4] Fixed to PI Control. 								
D ₁₀ 117	Torque Reference Threshold for P/PI Switch	0 to 300	%	200	Immediately				
Pn117	The threshold is used to switch spectreference.	ed controller from P	I to P. This value	is a percentage of	torque				
Pn118	Deviation Counter Threshold for P/PI Switch	0 to 10000	pulse	0	Immediately				
	The threshold is used to switch spee	ed controller from P	I to P. This value	is a pulse number					
Pn119	Acceleration Reference Threshold for P/PI Switch	0 to 3000	10rpm/s	0	Immediately				
	The threshold is used to switch spee	ed controller from P	I to P. This value	is an acceleration	on reference.				
Pn120	Speed Reference Threshold for P/PI Switch	0 to 10000	rpm	0	Immediately				
	The threshold is used to switch spee	ed controller from P	I to P. This value	is a speed referen	ce.				
	Gain Switch Mode	0 to 10	_	0	After restart				
Pn121	[0] Fixed to first group gains. [1] Use external signal (G-SEL) as the condition. [2] Use torque reference as the condition (threshold setting: Pn117). [3] Use position deviation counter as the condition (threshold setting: Pn118). [4] Use acceleration as the condition (threshold setting: Pn119). [5] Use speed reference as the condition (threshold setting: Pn120). [6] Use position reference as the condition (threshold setting: Pn123). [7] Use actual speed as the condition (threshold setting: Pn124). [8] Use position reference (Pn123) and actual speed (Pn124) as the condition. [9] Fixed to second group gains. [10] Use positioning completed flag as the condition.								
Pn122	Delay Time for Gain Switch	0 to 20000	0.1 ms	0	Immediately				
	The delay time for gain switching a	fter the condition ha	as satisfied.						
Pn123	Threshold for Gain Switch	0 to 20000	_	0	Immediately				
	The threshold of speed reference fo	r gain switching.							

No.	Index	Name	Range	Unit	Default				
	Speed Threshold for Gain Switch	0 to 2000	rpm	0	Immediately				
Pn124	This parameter is available only when using position reference and actual speed as the condition (Pn121=8).								
Pn125	Ramp Time for Position Loop Gain Switch	0 to 20000	0.1 ms	0	Immediately				
	Ramp time for gain switching, it is	only available to po	sition loop gain.						
Pn126	Hysteresis for Gain Switch	0 to 20000	_	0	Immediately				
111120	Hysteresis of gain switching condit	ions. It is used to pr	event gain switch	ing frequently.					
	Low Speed Filter	0 to 100	1 cycle	0	Immediately				
Pn127		determines the performance of the filter for low speed measurement. The filter will filter low speed, but the measured speed has significant delay if this value is large.							
	Coulomb Friction Compensation	0 to 3000	0.1%Tn	0	Immediately				
Pn130	This parameter is used to compensa and Motor rated torque.	ate coulomb friction	. The value is the	permillage of cou	lomb friction				
Pn131	Speed Dead Band for Coulomb Friction Compensation	0 to 100	rpm	0	Immediately				
	To set a dead band to disable coulor	To set a dead band to disable coulomb friction compensation. It is used to prevent vibration at zero speed.							
Pn132	Viscous Friction Compensation	0 to 1000	0.1%Tn / 1000rpm	0	Immediately				
	Sticking damp which is in direct pro	oportion to speed.							
	Encoder Speed Filter Time	0 to 30000	0.01 ms	4	Immediately				
Pn135	To set a proper time for smoothing is available when the instantaneous				This parameter				

No.	Index	Na	me	Rar	nge	Unit	Default		
Pn136	Tuning-free Rigidity		0~500		50	Hz	Immediately		
PII130	To set the servo rigidity in tuning	-free m	ode						
Pn137	Tuning-free Disturbance Observe bandwidth	r	0~1000		90	Hz	Immediately		
	To set the scale factor of the distu	ırbance	observer in tur	ning-	free mode				
Pn138	Percentage of Tuning-free Disturb Compensation	bance	0~100		100	%	Immediately		
	To set the scale factor of the disturbance observer in tuning-free mode								
Pn139	Tuning-free Load Inertia %		0~9999		250	%	Immediately		
11137	To set the percentage of load iner	tia in th	ne no-tuning m	ode					
Pn140	Tuning-free Torque Filtering Tin Constants		0~2500		100	0.01ms	Immediately		
	To set the torque filter time const	ant in t	uning-free mod	le					
	Application Function Setting 150	h00	000 ~ h0002	-		h0000	After restart		
Pn150		0 D 1 U 2 U Pn150	.0: Model Follo Do not use. Use the model f Use the model f .1: Reserved se .2: Reserved se .3: Reserved se	follow	ving control. ving control a (Do not char (Do not char	and load oscillation	n suppression.		
	Model Following Control Gain	10	to 1000	1/s		50	Immediately		
Pn151	This parameter determines the remodel following control gain, the shortened.								
Pn152	Model Following Control Gain Correction	20	to 500	%		100	Immediately		
-	This parameter is used for correc	ting the	e setting of the	mode	el following o	control gain.			

No.	Index	Name	Range	Unit	Default				
D.:150	Model Following Control Speed Feedforward	0 to 200	%	100	Immediately				
Pn153	This parameter is used for fine tuning the speed feedforward value output by the model following control gain. If you increase this setting, the bias can be reduced but overshooting will be likely to occur.								
	Model Following Control Torque Feedforward	0 to 200	%	100	Immediately				
Pn154	This parameter is used for fine-tuning the torque feedforward value output by the model following control gain. If you increase this setting, the response characteristic can be improved but overshooting will be likely to occur.								
D 455	Load Oscillation Frequency	50 to 500	0.1Hz	100	Immediately				
Pn155	In general, this setting is the anti-re	sonance frequency	of the two-mass se	ervo system.					
Pn156	Filter Time for Load Oscillation Suppression	2 to 500	0.1ms	10	Immediately				
F11136	If you increase this setting, the response characteristic can be softer but the effect of vibration suppression will be worse.								
	Limit for Load Oscillation Suppression	0 to 1000	rpm	100	Immediately				
Pn157	To set a compensation limiting for the jitter suppression at speed feedforward. If you decrease this setting, the response characteristic can be softer but the effect of vibration suppression will be worse.								
	Load Torque Compensation	0 to 100	%	0	Immediately				
Pn160	This parameter is a coefficient (percentage) to compensate load torque. Increase this value can improve load disturbance rejection performance but may cause vibration.								
D 464	Load Torque Observer Gain	0 to 1000	Hz	200	Immediately				
Pn161	This parameter is used to adjust the	response character	istic of the load ob	server.					
	Feedback Speed Selection	0 to 1	_	0	After restart				
Pn162	[0] Use encoder speed as the feedback speed. [1] Use observed speed as the feedback speed.								
	Turns for PJOG0	-50 to 50	rotation	5	Immediately				
Pn164	-								
D 445	Max Speed for PJOG0	100 to 3000	rpm	1000	Immediately				
Pn165									

No.	Index	Name	Range	Unit	Default					
D-166	Acc./Dec. Time for PJOG0	50 to 2000	ms	500	Immediately					
Pn166										
D 46	Stop Time for PJOG0	100 to 10000	ms	1000	Immediately					
Pn167	-									
Pn168	Turns for PJOG1	-50 to 50	rotation	-5	Immediately					
111100	-									
Pn169	Max Speed for PJOG1	100 to 3000	rpm	1000	Immediately					
111109	-									
Pn170	Acc./Dec. Time for PJOG1	50 to 2000	ms	500	Immediately					
F11170	-									
Dr. 171	Stop Time for PJOG1	100 to 10000	ms	1000	Immediately					
Pn171	-									
	Turns for Inertia Identification	0 to 1	_	0	Immediately					
Pn172	The number of turns the motor runs in the positive direction when offline inertia is identified [0] 8 rotations. [1] 4 rotations.									
Pn173	Frequency of Vibration Suppression Filter	100 to 2000	Hz	2000	Immediately					
	-									
Pn174	Adjust Bandwidth of Vibration Suppression Filter	1 to 100	-	30	Immediately					
	-									
D. 175	Vibration Suppression	0 to 500	_	100	Immediately					
Pn175	-									
Pn176	Lowpass Filter Time for Vibration Suppression	0 to 50	0.1ms	0	Immediately					
	-									

No.	Index	Name	Range	Unit	Default					
Pn177	Highpass Filter Time for Vibration Suppression	0 to 1000	0.1ms	1000	Immediately					
	-									
Pn178	Damping of Vibration Suppression Filter	0 to 500	-	100	Immediately					
	-									
Pn179	Amplitude Threshold for Vibration Detection	5 to 500	-	100	Immediately					
	This parameter is used for automati	c vibration suppress	sion.							
Pn180	Frequency Threshold for Vibration Detection	0 to 100	Hz	100	Immediately					
	This parameter is used for automati	c vibration suppress	sion.							
Pn181	Frequency of Notch Filter 1	50 to 5000	Hz	5000	Immediately					
111101										
D 100	Depth of Notch Filter 1	0 to 23	_	0	Immediately					
Pn182	_									
Pn183	Width of Notch Filter 1	0 to 15	_	2	Immediately					
111103										
Pn184	Frequency of Notch Filter 2	50 to 5000	Hz	5000	Immediately					
PN184	-									
D. 105	Depth of Notch Filter 2	0 to 23	_	0	Immediately					
Pn185	-									
D ₁₀ 10(Width of Notch Filter 2	0 to 15	_	2	Immediately					
Pn186	-									
D ₁₀ 107	Frequency of Notch Filter 3	50 to 5000	Hz	5000	Immediately					
Pn187	_									
Dn100	Depth of Notch Filter 3	0 to 23	_	0	Immediately					
Pn188										
	1									

No.	Index	Name	Range	Unit	Default					
D 100	Width of Notch Filter 3	0 to 15	-	2	Immediately					
Pn189	_									
Pn190	Auto Vibration Suppression Status	0 ~ F	_	0	Immediately					
Pn191	Auto Vibration Suppression Amplitude	0 ~ 1000	_	0	Immediately					
	_									
	PG Divided Ratio	16 to 16384	pulse	16384	After restart					
Pn200	Analog encoder output orthogonal of encoder output orthogonal difference			s value is the num	ber of analog					
	16-bit 1st Electronic Gear Numerator	1 to 100000	-	1	After restart					
Pn201	The 16-bit electronic gear parameters are valid when Pn009.2=0. The electronic gear enables the reference pulse to relate with the Servo motor travel distance, so the host controller doesn't change the mechanical deceleration ratio and encoder pulses. In fact, it is the setting of frequency doubling or frequency division to the reference pulses.									
	16-bit 1st Electronic Gear Denominator	1 to 100000	-	1	After restart					
Pn202	When setting Pn009.2 to 0, it is valid when the 16-bit electronic gear parameter is selected. The use of the electronic gear allows the command pulses to correspond to the amount of motor movement so that the upper unit does not have to pay attention to the mechanical reduction ratio and the number of encoder pulses, which is essentially a setting for multiplying or dividing the command pulses.									
	16-bit 2 nd Electronic Gear Numerator	1 to 100000	-	1	After restart					
Pn203	When setting Pn009.2 to 0, it is valid when the 16-bit electronic gear parameter is selected. The use of the electronic gear allows the command pulses to correspond to the amount of motor movement so that the upper unit does not have to pay attention to the mechanical reduction ratio and the number of encoder pulses, which is essentially a setting for multiplying or dividing the command pulses.									
D 201	Position Reference Filter Time Constant	0 to 32767	0.1 ms	0	Immediately					
Pn204	This value is used to smooth the input lag will occur if the value is too		et of smoothness is	s better when the	er when the value is higher,					
D- 205	Position Reference Filter Form Constant	0 to 1	_	0	After restart					
Pn205	• 0: 1st order filter • 1: 2nd order filter									

No.	Index	N	Name	Range	Unit	Default				
Pn207	Locked-rotor Torque during Homing	1	0 to 300	%	100	Immediately				
	The value limits the torque during homing mode; Unit: % rated torque.									
Pn208	Locked-rotor Torque Time during Homing 4 to 30000 0.1 ms 4 Immediately									
	The allowed time for the stalled during homing mode. Unit: 0.1ms									
Pn210	P 0 1 P 0 1	rn21	Use the first encode Use the second e 10.2: PG Frequence Maintain existing Invert the phase	ncoder der Encoder for Frequency divencoder frequency cy Dividing Pulse	viding output dividing output Phase Selection lividing pulse	utput or Not After restart				
Pn211	Application runction Setting 211		00000 ~ 00001	0001		And lesian				
Pn300	Analog Speed Reference Input Gain	0) to 3000	150	rpm/v	Immediately				
	The corresponding speed to 1V and	alog	g input.							
	Analog Speed Given Zero Bias	-	1000 to 1000	10 mV	0	Immediately				
Pn301	This parameter is used to set zero bias of analog speed given, and it is related with the analog speed reference input gain (Pn300). The analog speed reference after setting is calculated as follows: Analog speed reference=(Speed reference input analog voltage —Analog speed reference zero bias)×Analog speed reference input gain									

No.	Index	Name	Range	Unit	Default				
D:: 202	Analog Speed Command Gain 2	0 ~ 3000	150	rpm/v	Immediately				
Pn302	The speed value corresponding to analog input per volt.								
	Inner Speed Reference	-6000 to 6000	rpm	500	Immediately				
Pn304	To set the inner Motor speed reference. This setting is available when servo is in inner speed control mode ($Pn006.0 = 0$ and $Pn005.1 = 1$).								
D 205	Jogging Speed	0 to 6000	rpm	500	Immediately				
Pn305	To set a speed for the Motor in JOC	G operation, and the	rotation direction	is determined by	the reference.				
D 207	Soft Start Acceleration Time	0 to 10000	ms	0	Immediately				
Pn306	The time to accelerate the motor to	The time to accelerate the motor to 1000rpm on slope speed reference.							
Pn307	Soft Start Deceleration Time	0 to 10000	ms	0	Immediately				
	The time to decelerate to 1000rpm	on slope speed refer	rence.						
D 200	Speed Reference Filter Time	0 to 10000	ms	0	Immediately				
Pn308	To set speed reference filter time.								
D 200	S-Curve Rise Time	0 to 10000	ms	0	Immediately				
Pn309	To set a rise time for transiting from one speed point to another speed point in the S-curve.								
	Speed Reference Smooth Mode Selection	0 to 3	-	0	After restart				
Pn310	[0] Ramp [1] S-Curve [2] Primary filtering [3] Secondary filtering								
	S-Curve Selection	0 to 3	_	0	After restart				
Pn311	To set the transition form of the S-o	curve.			1				

No.	Index	Name			9	Range	Unit	Defa	ult
	Internal Speed 1			-6000	to 6000	rpm	100	Imme	diately
	The settings of Pn for each internal s			valid w	hen Pn005.1	1=3, 4, 5 or 6. The	table below lists	the con	ditions
	Input Signal				- Speed Selection				
	/P-CON	/PCL	/N	CL	Speed Sen				
		OFF(H)	OFF(H)		Zero speed	d or switch to othe	er control methods	3	
Pn316	OFF(H)	OFF(H)	ON(L)		Internal S ₁	peed 1			
		ON(L)	OF	FF(H)	Internal S ₁	peed 2			
		ON(L)	ON	N(L)	Internal S ₁	peed 3			
		OFF(H) OF		F(H)	Internal S ₁	peed 4			
	ON(L)	OFF(H)	ON	N(L)	Internal Speed 5				
		ON(L)	OF	FF(H)	Internal S ₁	peed 6			
		ON(L)	ON	N(L)	Internal S ₁	peed 7			
D 017	Internal Speed 2			-6000	to 6000	rpm	200	Imme	diately
Pn317	Refer to the descri	ptions in Pn	316.						
Pn318	Internal Speed 3			-6000	to 6000	rpm	300	Imme	diately
	Refer to the descriptions in Pn316.								
Pn319	Internal Speed 4			-6000	-6000 to 6000 rpm -100 Immed				
111319	Refer to the descri	iptions in Pn	316.						
D220	Internal Speed 5			-6000	to 6000	rpm	-200	Imme	diately
Pn320	Refer to the descri	ptions in Pn	316.						
Pn321	Internal Speed 6			-6000	to 6000	rpm	-300	Imme	diately
111321	Refer to the descri	iptions in Pn	316.						
Pn322	Internal Speed 7			-6000	to 6000	rpm	500	Imme	diately
Ph322	Refer to the descri	ptions in Pn	316.						
D _m 202	Overspeed Detecti	ion Threshol	d	1 to 80	000	rpm	8000	Imme	diately
Pn323	A.03 alarm occurs	if the Motor	r velo	ocity exc	ceeds this th	reshold.			
Pn324	PCP Controls Tim	ne of Stoppin	g	0 to 10	0000	ms	100	Imme	diately
	The time required	for trapezoio	dal de	ecelerati	ion of 1000	rpm under the ind	exing function.		

No.	Index		Name	Range	Unit	Default			
Pn325	Max. Limit Value of Soft Limi	t	-	2000000000	P	Immediately			
PII323	The maximum limit value of so	oft lir	ft limit in absolute position						
Pn326	Min. Limit Value of Soft Limit	it2000000000 P Immediately							
F11320	The minimum limit value in ab	solut	te position		_				
	TouchProbe Input Port Allocat	ion	0000 to 0022	_	0010	After restart			
	<i>HBB </i>								
			n331.0: CN1-18 All						
		0							
		1							
Pn331		2	Do not allocate Touch Probe signal						
		Pr	Pn331.1: CN1-19 Allocation Signal						
		0	Allocate TP1 sig	gnal to CN1-19					
		1	Allocate TP2 sig	gnal to CN1-19					
		2	Do not allocate	Touch Probe sign	al				
		Pr	n331.2: Reserved						
		_							
		Pr	n331.3: Reserved						

No.	Index	Name	Range	Unit	Default					
Pn332	Touch Probe Digital Input Filtering Time	0 to 200	10ns	100	After restart					
	TouchProbe Input Port Signal Inverts	0000 to 0011	-	0000	After restart					
	<i>68888</i>									
	P	n333.0: selection of	CN1-18 Signal in	verts						
	0	Not inverted (va	lid during low lev	rel)						
Pn333		Inverted (valid o	luring high level)							
	D.	n333.1: Signal inver	ts selection of CN	I1 ₋ 10						
			lid during low lev							
	1		during high level)	,						
		,								
	Pi	n333.2: Reserved								
	Pn333.3: Reserved									
Pn400	Analog Torque Reference Gain		0.1V/100%	33	Immediately					
	This parameter sets the voltage value	T		Τ	<u> </u>					
Pn401	Forward Torque Internal Limit	0 to 350	%	350	Immediately					
111401	The value of motor output torque li capacity.	mit, and the parame	ter setting range is	s based on the actu	ual overload					
	Reverse Torque Internal Limit	0 to 350	%	300	Immediately					
Pn402	The value of motor output torque li capacity.	mit, and the parame	ter setting range is	s based on the actu	ıal overload					
	Forward Torque External Limit	0 to 350	%	100	Immediately					
Pn403	The value of motor output torque li capacity.	mit, and the parame	ter setting range is	s based on the actu	ual overload					
	Reverse Torque External Limit	0 to 350	%	100	Immediately					
Pn404	The value of motor output torque li capacity.	mit, and the parame	ter setting range is	s based on the actu	ual overload					

No.	Index	Name	Range	Unit	Default			
	Reverse Brake Torque Limit	0 to 350	%	300	Immediately			
Pn405	The value of motor output torque limit, and the parameter setting range is based on the actual overload capacity.							
Pn406	Torque Limit at Main Circuit Voltage Drop	0 to 100	%	50	Immediately			
	_							
Pn407	Release Time for Torque Limit at Main Circuit Voltage Drop	0 to 1000	ms	100	Immediately			
	-							
Pn408	Speed Limit during Torque Control	0 to 6000	rpm	1500	Immediately			
	_							
	Torque Mode	0 to 1	-	0	Immediately			
Pn409	O: Analog torque mode Torque contact mode							
	Torque Contact 1	-400 to 400	1/100%	0	Immediately			
Pn410	-							
D., 411	Torque Contact 2	-400 to 400	1/100%	0	Immediately			
Pn411	_							
D 412	Torque Contact 3	-400 to 400	1/100%	0	Immediately			
Pn412	_							
D 410	Torque Contact 4	-400 to 400	1/100%	0	Immediately			
Pn413	_							
Pn414	Analog Torque Command Gain 2	10 ~ 100	0.1V/100%	Pn414	Immediately			
r11414	The parameter means the voltage va	alue of the analog i	nput required to a	chieve the rated to	orque.			
Dr. 415	Analog Torque Given Zero Bias	-1000 to 1000	10 mv	0	Immediately			
Pn415	_							

No.	Index	Name	Range	Unit	Default				
	Position Arrival Tolerance	0 to 50000	pulse	10	Immediately				
Pn500	The /COIN (Positioning Completion this setting.	The /COIN (Positioning Completion) output signal will turn ON when the deviation counter is less than this setting.							
	Speed Arrival Tolerance	0 to 100	rpm	10	Immediately				
Pn501	The /VCMP (Speed Coincidence D speed reference and speed feedback			when the deviation	between the				
D 502	Zero Clamp Speed	0 to 3000	rpm	10	Immediately				
Pn502	Locks motor at the current position	when the input ana	log speed drops be	elow this value.					
D ₁₀ E 0.2	Rotation Status Detection Threshold	0 to 3000	rpm	20	Immediately				
Pn503	It is considered the Motor has been ON when the Motor speed exceeds	•	he /TGON (Rotati	on Detection) out	put signal turns				
	Position Deviation Counter Overflow Threshold	1 to 83886080	pulse	1	Immediately				
Pn504	It is considered the deviation counter has been overflowed and an alarm signal outputs when the deviation counter exceeds this setting. NOTE: the default setting depends on the encoder resolution.								
	Servo ON Waiting Time	-2000 to 2000	ms	0	Immediately				
Pn505	Parameters from Pn505 to Pn508 are available only when the /BK (Brake Output) signal turns ON. They are used for controlling the holding brake, so that the moving part of the machine cannot move due to gravity or an external force. • If this setting is a positive number, when the servo is ON, the /BK signal will turn ON firstly, and wait								
	for this setting time, then excite the Motor. • If the setting is a negative number, when the servo is ON, the Motor can be excited immediately, and wait for this setting time, then the /BK signal will turn ON.								
	Servo OFF Waiting Time	0 to 500	10 ms	0	Immediately				
Pn506	The Servo is OFF when setting it as sometimes move slightly under the characteristics of the brake.								
	Brake Enable Speed Threshold	10 to 100	rpm	100	Immediately				
Pn507	The /BK signal will turn ON when	the Motor speed is	lower than this set	ting after the Serv	o is OFF.				
	Brake Enable Waiting Time	10 to 100	10 ms	50	Immediately				
Pn508	The /BK signal will turn ON when The /BK signal tunes ON as long as Reference Waiting Time, is satisfie	s one of the condition	•		l and Brake				

No.	Index		Name	Range	Unit	Default
]	Digital Input Signal All	ocations 1	h00000000 to h1C1C1C1C	-	03020100	After restart
Pn509	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16	S-ON P-CON P-CON P-OT N-OT ALMRS' CLR P-CL N-CL G-SEL JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J TORQ_J TORQ_J TORQ_S ANLOD POS0 POS1 POS2 POS3 POS4 ANAG_S	OG+ OG- HALT P D1 D2 SPEED_LIMIT1 SPEED_LIMIT2 _REV	- 0 3 0		cation as CN1-14. onds to port CN1 bit3

No. In	ndex		Name	Range	Unit	Default
输	输入信号分配 2		h00000000 to h1C1C1C1C	_	07060504	After restart
Pn510	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18	S-ON P-CON P-CON P-OT N-OT ALMRS' CLR P-CL N-CL G-SEL JDPOS-J	P D1 D2 SPEED_LIMIT1 SPEED_LIMIT2REV	- 07	Pn510.2: Corre CN1_41 or virtua 00~1A: Same allo Pn510.3: Corre CN1_42 or virtua	sponds to port

No.	Index	Name	Range	Unit	Default
	Digital Output Signal Allocations	h0000 to h0ccc	-	0210	After restart
Pn511		Pn511.0: Allocate sign COIN/VCMP TGON S-RDY CLT BK PGC OT RD HOME TCR A R-OUT1	gnal to CN1-05, 0 llocation of CN1- gnal to CN1-09, 1	6 11, 12	
1	I	Pn511.3: Reserved se	etting (Do not cha	nge).	

No.	Index		Name	Range	Unit	Default		
	Digital Input Signals (Low B from Bus Master	its)	b0000 to b1111	_	0000	After restart		
Pn512	6000	Pn 0 1 Pn 0	1 Enabled. Pn512.1: Select and allocate CN-15 through the bus master					
			1 Endoted.					
		Pn	512.2: Select and a	llocate CN-16 thr	ough the bus mast	ter		
		0	Not enabled.					
		1	Enabled.					
			512.3: Select and a	llocate CN-17 thr	ough the bus mast	ter		
		0	Not enabled.					
		1	Enabled.					

No.	Index		Name	Range	Unit	Default	
	Digital Input Signals (High Bits) from Bus Master		b0000 to b1111	-	0000	After restart	
Pn513		0 1 Pn5 0 1 Pn5 0	Not enabled. Enabled. 513.1: Select and a Not enabled. Enabled. 513.2: Select and a Not enabled. Enabled. 513.3: Select and a Not enabled. Enabled. 513.4: Select and a Not enabled. Enabled. 513.5: Select and a	allocate CN-40 thr	ough the bus mass	ter	
D 54.4	Input Port Filtering		0 to 1000	1 cycle	1	Immediately	
Pn514	To set a filtering time for the input signals. If you increase this setting, the signal changes on the input por will be delayed.						
	Alarm Output Signal Filter Time	;	0 to 3	2 cycles	1	Immediately	
Pn515	To set a filtering time for the alar If you increase this setting, the al		=				

No.	Index		Name	Range	Unit	Default		
	Digital Input Signal Inverts	1	b0000 to b1111	_	0000	After restart		
Pn516	6000	Pn 0 1	The signal is in The signal is in 516.1: CN1-15 inv The signal is no	verted.				
		1						
			-					
		Pn	516.2: CN1-16 inv	erse selection				
		0	The signal is no	ot inverted.				
		1	The signal is in	verted.				
		Pn	516.3: CN1-17 inv	erse selection				
		0	The signal is no	ot inverted.				
		1	The signal is in	The signal is inverted.				

No.	Index	Name	Range	Unit	Default			
	Digital Input Signal Inverts 2	0000 to 1111	-	0000	After restart			
Pn517	P 0 1	The signal is in The signal is in The signal is not The signal is in The signal is in The signal is in The signal is not The signal is not The signal is in	ot inverted. nverted. verse selection ot inverted. verse selection ot inverted. verse selection ot inverted. verse selection ot inverted.					
Pn518	Dynamic Braking Time	50 ~ 20000	20000	0.5ms	Immediately			
111510	The time required for dynamic braking of the motor.							
Pn519	Serial Encoder Communication Error Tolerance	0 to 10000	1 cycle	3	Immediately			
	The warning of serial encoder related alarms can be ignored if the alarms occurred within this setting.							
Pn520	Position Arrival Status Detection Time Threshold	0 to 60000	0.1 ms	500	Immediately			
	To set a required time for completi-	ng the positioning.						

No.	Index	I	Name	Range	Unit	Default
	Application Function Setting 521	ł	b0000 to b0011	ı	0010	After restart
Pn521		A.10 aboo 0 1 Pn5 0		larm mask bit Pr 21.0, and A.16 ca 5 is masked, the b tery is connected)	ns21.0; for drives nnot be masked)	of 800W and
		Pn5	221.3: Reserved se	tting (Do not char	ige).	
	Motor Overload Detection Start Threshold	1	100 to 150	%	100	Immediately
Pn525	A04 alarms occurs if the load per The recommended setting is 120. This setting is always 115 for the	or le	ess, otherwise the	_		1.

No.	Index	Name	Range	Unit	Default
	Digital Output Signal Inverts	b0000 to b1111	_	0000	After restart
	A C C C P O 1	n528.0: CN1-05, -00 The signal is no The signal is in	ot inverted.		
Pn528	P	n528.1: CN1-07, 08	inverse selection		
	0	The signal is no	ot inverted.		
		The signal is in	verted.		
	P	n528.2: CN1-09, 10	inverse selection		
	0	The signal is no	ot inverted.		
	1	The signal is in	verted.		
		n528.3: CN1-11, 12			
	0				
	1	The signal is inv	verted.	<u> </u>	<u> </u>
D. 520	Torque Reaches Status Detection Torque Threshold	3 to 300	%	100	Immediately
Pn529	The /TCR signal will be output whethan that set in Pn530.	en the torque output	exceeds the settir	ng in Pn529 and th	ne time is longer
Pn530	Torque Detection Output Signal Time	1 to 1000	ms	10	Immediately
F11330	The /TCR signal will be output whethan that set in Pn530.	en the torque output	exceeds the setting	ng in Pn529 and th	e time is longer
D. 504	Pulse Input Filter Time	10 to 100	10 ns	20	Immediately
Pn531	_				
Pn533	Current Threshold when DB Brake Circuit is Damaged	1 ~ 9999	300	mA	Immediately
	_				

No.	Index	Name	Range	Unit	Default			
Pn534	Alarm Threshold in case of Excessive IPM Junction Temperature	1 ~ 200	135	°C	Immediately			
	_							
Pn535	Discharging Resistor Resistance	25 to 300	Ω	50	After restart			
111333	To set the resistance value for the b	raking.						
Pn536	Discharging Resistor Power	10 to 2000	W	60	After restart			
11000	To set the resistance value for the b	raking.						
	Momentary Power Interruption Hold Time	0 to 50	period	1	Immediately			
Pn538	Even if the main power supply to the ON status) will be maintained for the	ne time set by this p	arameter.		·			
	The setting is a number of periods, and the time of one period depends on the setting of Pn007.3: • Pn007.3=0, the time of one period is 1/50s.							
	Pn007.3=1, the time of one period i	s 1/60s.	T	1	T			
Pn539	Pump-up Opening Delay Time	0 ~ 100	0	ms	Immediately			
Pn540	Pump-up Closing Delay Time	0 ~ 100	0	ms	Immediately			
111340	_							
Pn541	Current Threshold for Detecting Abnormal Operation	0 to 400	% In	200	Immediately			
	Set a percentage threshold for the current to detect that the Motor has been operating abnormally.							
Pn542	Acceleration Threshold for Detecting Abnormal Operation	0 to 1000	krpm/s	50	Immediately			
	Set a threshold for the acceleration to detect that the Motor has been operating abnormally.							
Pn685	Speed of Finding Reference Point	0 to 3000	rpm	1500	Immediately			
111000	_							
Pn686	Speed of Homing	0 to 200	rpm	30	Immediately			
111000	Sets the speed of the motor after rea	aching the limit swi	tch.					

No.	Index		Name	Range	Unit	Default	
	Homing Mode Setting		b0000 to b1111	-	0000	After restart	
Pn689	Pn689.0: Homing Enabled 0 Turn OFF the origin return function 1 Turn ON the origin return function Pn689.1: Direct Homing After Power-on 0 Homing triggered by SHOM signal 1 Direct homing after power-on Pn689.2: ORG Storage 0 Do not store the origin 1 Store the origin Pn689.3: Actions when Encountering OT during Homing 0 Return to find homing position after encountering OT						
		1	Enter limit statu	s after encountering	ng OT		
Dr. (00	Offset Pulse Number During Homing (High-Bit)		-9999 to 9999	10000 pulse	0	Immediately	
Pn690	The parameters Pn690 and Pn691 are used in combination, and their algebraic sum is the pulse number of the encoder offset required in the ZRN.						
Pn691	Offset Pulse Number During Homing (Low-Bit)		-9999 to 9999	1 pulse	0	Immediately	
	Please refer to the instructions in Pn691.						
Pn692	Selection of Homing Mode		0 to 10	_	0	Immediately	
111072	_						
Pn693	Homing Acceleration		0 to 5000	-	100	Immediately	

No.	Index	Name	Range	Unit	Default		
Pn694	Origin Storage, Single-turn Position	-2147483648 to 2147483647	-	0	Immediately		
Pn695	Origin Storage, Multi-turn Position	-2147483648 to 2147483647	-	0	Immediately		
	Modbus Communication Setting	h0000 to h1182	_	0151	After restart		
	HQ 15 1	Pn700.0: MODBUS	Communication 1	Raud Rate			
				Baud Rate			
		1					
		19200 bps					
	P	Pn700.1: Selection of	f MODBUS Prot	ocol			
	0	7, N, 2 (Modbu	ıs, ASCII)				
D 700		7, E, 1 (Modbus, ASCII)					
Pn700		2 7, O, 1 (Modbus, ASCII)					
	3	3 8, N, 2 (Modbus, ASCII)					
	4	8, E, 1 (Modbu	is, ASCII)				
	5	8, O, 1 (Modbu	ıs, ASCII)				
	6	8, N, 2 (Modbu	ıs, RTU)				
		8, E, 1 (Modbu	ıs, RTU)				
	8	8, O, 1 (Modbu	ıs, RTU)				
	P	Pn700.2: SCI Comm	unication Selection	on			
	0	No protocol for	r SCI communica	ation.			
		Use MODBUS	in SCI commun	ication.			
	Р	Pn700.3 Reserved					
Dro 701	MODBUS Axis Address	1 to 247		1	After restart		
Pn701	The axis address during MODBUS	S protocol communic	cation.				

No.	Index	Name	Range	Unit	Default			
	CAN Communication Settings	0 to 5	_	1	After restart			
Pn703	[0] 50Kbps [1] 100Kbps [2] 125Kbps [3] 250Kbps [4] 500Kbps [5] 1Mbps							
Pn704	CAN Communication Node	1 to 127	_	1	After restart			
F11/04	The axis address during CANopen communication.							
Pn705	DC Min. Cycle Threshold	1~9999999	11999	10ns	After restart			
	To set the DC jitter threshold in the FPGA							
Pn706	Jitter of DC Max. Cycle Threshold	1~99999	499	10ns	Immediately			
	To set the DC jitter threshold in the	FPGA						

No.	Index		Name	Range	Unit	Default
	Allocate virtual input sig port 1	nal to	h00000000 to h1C1C1C1C	-	0B0A0908	Immediately
Pn709	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C	S-ON P-CON P-CON P-CON P-CON P-OT N-OT ALMRS CLR P-CL N-CL G-SEL JDPOS-J JDPOS-J JDPOS-J JDPOS-J JDPOS-J TORQ_J TORQ_J TORQ_S ANLOD POS0 POS1 POS2 POS3 POS4 MDP1 MD0 MD1	IOG+ IOG- HALT P ID1 ID2 SPEED_LIMIT1 SPEED_LIMIT2	- [] b [Pn709.2: Allocate 00to1C: same as Bit8 Pn709.3: Allocate	the allocation of

No.	Index		Name	Range	Unit	Default	
	Allocate virtual inp port 2	al input signal to		h00000000 to h1C1C1C1C	-	0F0E0D0C	Immediately
Pn710		Pn710.0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C	S-ON P-CON P-OT N-OT ALMRS' CLR P-CL N-CL G-SEL JDPOS-J JDPOS-J JDPOS-J JTORQ_J TORQ_J TORQ_S ANLOD POS0 POS1 POS2 POS3 POS4 MDP1 MD0 MD1	P D1 D2 SPEED_LIMIT1 SPEED_LIMIT2	- B F	Pn710.2: Allocate 00to1C: same as Bit12 Pn710.3: Allocate	the allocation of

No.	Index	N	Jame	Range	Unit	Default	
	Virtual Input Port Signal Inverts1		0000 to b1111	_	0000	Immediately	
Pn716		0	6.0: bit8 inverse The signal is in The signal is in 6.1: bit9 inverse The signal is no	verted. selection of inverted.			
		Pn716.2: bit10 inverse selection					
		0	The signal is no	ot inverted.			
		1	The signal is in	verted.			
			6.3: bit11 invers				
		0 The signal is not inverted.					
		1	The signal is in	verted.			

No.	Index	Name	Range	Unit	Default
	Virtual Input Port Signal Inverts 2	b0000 to b1111	_	0000	Immediately
Pn717	F 0	The signal is in The signal is not the signal is in The signal is in The signal is in	ot inverted. ee selection ot inverted. everted. everted. ee selection ot inverted. ee selection ot inverted.		
	F	n717.3: bit15 invers	se selection		
	0	The signal is no	ot inverted.		
	1	The signal is in	iverted.		
Pn720	Homing Method	1 to 35	_	1	Immediately
111720	Mapping to the object 6098h in Ci.	A402.			
Pn721	Speed during Search for Switch	1to0x7FFFFFFF	0.1 rpm	5000	Immediately
111/21	Mapping to the object 6099:01 in 0	CiA402.			
D ₁₀ 700	Speed during Search for Zero	1to0x7FFFFFFF	0.1 rpm	100	Immediately
Pn722	Mapping to the object 6099:02 in 0				
D., 700	Homing Acceleration	1to0x7FFFFFFF	0.1 rpm/s	1000000	Immediately
Pn723	Mapping to the object 609Ah in Ci	A402.			
Pn724	Home Offset	-2147483648 to 2147483647	pulse	0	Immediately
	Mapping to the object 6093-01h in	CiA402.			

No.	Index	Name	Range	Unit	Default				
Pn725	Bus Electronic Gear Ratio (Numerator)	1~1073741824	pulse	1	Immediately				
	Mapping to the object 6093:01 in C	iA402.							
Pn726	Bus Electronic Gear Ratio (Denominator)	1 ~1073741824	pulse	1	After restart				
	Mapping to the object 6093:02 in CiA402.								
Pn728	Tool Magazine Single-turn Storage	-2147483648to 2147483647	pulse	0	Immediately				
	Tool magazine origin storage, single	e-turn position							
Pn729	Auto Signal-step Running Tool Change	0 to 1	-	0	Immediately				
	The enabled position for automatic single-step running tool change								
Pn730	Return to Nearest Tool Location Upon Power-on	0 to 1	-	0	After restart				
	The enabled position for returning to the nearest position after power it on								
Pn731	Position Offset Threshold for Return to Nearest Tool Location Upon Power-on	0 to 10000	0.0001 round	1000	Immediately				
	Range of tool number error is Pn737toPn731, and the disk moves to center position of the nearest tool location								
Pn732	Returning Speed to Nearest Tool Location Upon Power-on	0 to 500	rpm	100	Immediately				
	The speed to return to the nearest to	ool location (1 arriva	al distance) after p	oower on					
D-722	Returning Acceleration to Nearest Tool Location Upon Power-on	0 to 10000	ms	200	Immediately				
Pn733	The acceleration to return to the nearest tool location after power on (the time required for accelerating from 0 to 1000 revolutions)								
D 704	Returning Deceleration to Nearest Tool Location Upon Power-on	0 to 10000	ms	200	Immediately				
Pn734	The deceleration to return to the near from 1000 revolutions to 0)	arest tool location a	fter power on (the	time required for	decelerating				
Pn735	Number of Tool Location	1 to 30	_	20	Immediately				
111/33	_								

No.	Index	Name	Range	Unit	Default					
D. 70 (Tool Change Running Speed	0 to 6000	rpm	3000	Immediately					
Pn736										
Pn737	Tool Number Error Range	0 to 10000	0.0001 round	250	Immediately					
Pn/3/	The tool number error range, in whi	ich tool location sto	ps and outputs too	ol number						
Pn738	Near Tool Running Acceleration	0 to 10000	ms	200	Immediately					
	The nearest tool running acceleration (the time required for accelerating from 0 to 1000 revolutions)									
Pn739	Near Tool Running Deceleration	0 to 10000	ms	200	Immediately					
11039	The nearest tool running deceleration (the time required for decelerating from 1000 revolutions to 0)									
Pn740	Remote Tool Running Acceleration	0 to 10000	ms	200	Immediately					
	The remote tool running acceleration (the time required for accelerating from 0 to 1000 revolutions)									
Pn741	Remote Tool Running Deceleration	0 to 10000	ms	200	Immediately					
	The remote tool running acceleration (the time required for decelerating from 1000 revolutions to 0)									
D 740	Tool Change Delay	0 to 10000	ms	500	Immediately					
Pn742	The time delayed in tool change									

No.	Index	Naı	me	Rar	ıge	Unit	Default
	Motor Power No.	•	h0000 ~ h05	50F	0	_	After restart
Pn800	F	Pn800.	0: Motor Powe 1: Motor Powe 2: Motor Powe 3: Motor Powe	er No			
	Motor Design Sequence		h0000 ~ h00		0	_	After restart
Pn801	1 2 3 F	F S S P N S O 1	D: Motor Seque irst generation econd generati hird-party mot M3A motors 1: Reserved 2: Reserved 3: Reserved	moto on m			
	Initial Encoder Phase	11001.	0 ~ 21474836	647	0		After restart
Pn802	_			•	<u> </u>		1
Pn803	Reserved		0~0		0	_	After restart
11003	Reserved		Γ	1		Γ	
	Motor Series		0 ~ 5		0		After restart

No.	Index	Name	Range	Unit	Default
Pn804	[0] EMJ [1] EMG [2] EML [3] EMB [4] 保留 [5] EM3A				

No.	Index	Name	F	Range	Unit	Default	
	Motor Type	0 ~ 1		0	_	After restart	
Pn805	[0] SPM [1] IPM				·	•	
	Voltage Class	0 ~ 1	l	0	_	After restart	
Pn806	[0] 200V [1] 380V						
Pn807	Motor Power	1 ~ 5	50000	1	W	After restart	
111007	_						
	Motor Temperature Sensor Type	0 ~ 3	3	0	_	After restart	
Pn808	[0] N/A [1] KTY84 [2] PT1000 [3] PT100						
Pn809	Motor Derating Factor	1 ~ 1	100	1	0.01Tn	After restart	
	_	1		1			
D 010	Rated Torque	1 ~ 1	10000	1	0.01Nm	After restart	
Pn810	_				L		
D 011	Max. Torque	1 ~ 1	10000	1	0.01Nm	After restart	
Pn811	_	l .		l .	l	1	
Pn812	Rated current	1 ~ 2	2000	1	0.1A	After restart	
FIIO12	_	•		•			
Pn813	Max. current	1 ~ 2	2000	1	0.1A	After restart	
FIIO13	_	•		•			
Pn814	Rated Speed	1 ~ 1	10000	1	rpm	After restart	
F11014	_						
Pn815	Max. Speed	1 ~ 1	10000	1	rpm	After restart	
111013	_						
Pn816	Limit Speed	1 ~ 1	10000	1	rpm	After restart	
111010	_						
Pn817	a0*10000	-100	00 ~ 10000	0	_	After restart	
111017	To convert torque into the correspon	ding curre	nt				
Pn818	a1*10000	-200	0 ~ 2000	0	_	After restart	
1 11010	To convert torque into the correspon	ding curre	nt				
Pn819	a2*10000	-200	0 ~ 2000	0	_	After restart	
111017	To convert torque into the correspon	ding curre	nt				
	a3*10000	0 ~ ()	0		After restart	

No.	Index	Name	Range	Unit	Default		
Pn820	To convert torque into the corresponding current						

No.	Index	Name	Range		Unit	Default			
D 001	a4*10000	0~0	0		_	After restart			
Pn821	To convert torque into the correspon	nding current	I						
D 000	b0*10000	-10000 ~ 10	000 0		_	After restart			
Pn822	To convert current into the correspo	nding torque			1				
D., 922	b1*10000	-2000 ~ 200	0 0		_	After restart			
Pn823	To convert current into the correspo	nding torque	'		-	-			
Dr. 924	b2*10000	-2000 ~ 200	0 0		_	After restart			
Pn824	To convert current into the correspo	nding torque	'		-	-			
Dr. 925	b3*10000	0 ~ 0	0		_	After restart			
Pn825	To convert current into the correspo	nding torque	'		-	-			
D:: 926	b4*10000	0 ~ 0	0		_	After restart			
Pn826	To convert current into the correspo	nding torque	'		-	-			
Pn827	Back Electromotive Force Coefficie Ke	1000 ~ 5000	10	000	0.01V/Krpm	After restart			
Dn 020	Phase Resistance Rs	0 ~ 900000	0		0.001Ω	After restart			
Pn828									
Pn829	Ld	0 ~ 5000	0		0.1mH	After restart			
P11629	_	•	•			•			
Pn830	Lq	0 ~ 5000	0		0.1mH	After restart			
F11630	_	<u> </u>				•			
Pn831	Motor Inertia	0 ~ 100000	0		1e-8Kgm^2	After restart			
FIIOSI	_	·				•			
Pn832	Pair of Poles	0 ~ 20	0		_	After restart			
F11032	_	·							
Pn833	Electrical Time Constant te	0 ~ 10000	0		0.01ms	After restart			
F11033	_	<u> </u>				•			
Pn834	Mechanical Time Constant tm	0 ~ 10000	0		0.01ms	After restart			
F11054	_	<u> </u>				•			
Pn835	Thermal Time Constant th	0 ~ 10000	0		0.01ms	After restart			
F11033	_	<u> </u>				•			
Pn836	Thermal Model Parameter Tp[0]*10000	0 ~ 0	0		_	After restart			
	For motor overheating protection an	d alarm judgement							
Pn837	Thermal Model Parameter Tp[1]*10000	0 ~ 0	0			After restart			

No.	Index	Name	Range	Unit	Default		
	For motor overheating protection and alarm judgement.						

No.	Index	Naı	ne	Ran	nge	Unit	De	fault		
Pn838	Thermal Model Parameter Tp[2]*10000		0 ~ 0		0	_	A	fter restart		
	For motor overheating protection ar	nd ala	rm judgement.							
Pn839	Thermal Model Parameter Tp[3]*10000		0 ~ 0		0	_	A	fter restart		
	For motor overheating protection and alarm judgement.									
Pn840	Thermal Model Parameter Tp[4]*10000		0 ~ 0		0	_	A	fter restart		
	For motor overheating protection and alarm judgement.									
Pn841	Motor Overload Curve Factor k[0]*10000		0 ~ 100000		0	_	A	fter restart		
	For motor overload protection and alarm judgement.									
Pn842	Motor Overload Curve Factor k[1]*10000		0 ~ 100000		0	_	A	fter restart		
	For motor overload protection and alarm judgement.									
Pn843	Motor Overload Curve Factor k[2]*10000		0 ~ 100000		0	_	A	fter restart		
	For motor overload protection and alarm judgement.									
Pn844	Motor Overload Curve Factor k[3]*10000		0 ~ 0		0	_	A	fter restart		
	For motor overload protection and a	alarm	judgement.							
Pn845	Motor Overload Curve Factor k[4]*10000		0 ~ 0		0	_	A	fter restart		
	For motor overload protection and a	alarm	judgement.							
	Motor Oil Seal Property		0 ~ 1		0	_	A	fter restart		
Pn846	[0] Without oil seal [1] With oil seal									
	Encoder Type		h0000 ~ h00	0E	0	_	A	fter restart		

No.	Index		Name	Range	Unit	Default				
	60000									
		Pn8	Pn875.0: Encoder Type							
		0								
		1	_							
		2	_							
		3	17-bit multi-tur	n, Tamagawa						
		4	17-bit single-tu	rn, Tamagawa						
			5 Reserved (resolver)							
		6	Reserved							
D 055		7	20-bit multi-tur	n, Nikon	, Nikon					
Pn875		8	20-bit single-tu	rn, Nikon						
		9	20-bit multi-tur	rn, Tamagawa						
		A	19-bit multi-tur	n, Endat						
		В	20-bit single-tu	rn, Biss						
		С	23-bit multi-tur	n, Tamagawa						
		D	20-bit single-tu	rn, Tamagawa						
		Е	23-bit multi-tur	n, Nikon						
		Pn8	75.1: Encoder Ty	pe, as above						
		1				_				
		Pn8	75.2: Reserved							
		Pn8	75.3: Reserved							

No.	Index	Na	ame	Rang	ge	Unit	Default	
Pn876	Reserved	•	0		0	_	After restart	
F11670	_		•					
	Encoder Type		0 ~ 4		0		After restart	
Pn877	[0] Reserved [1] Tamagawa [2] Nikon [3] Endat [4] Biss-C							
	Encoder Function Type		0 ~ 1		0			
Pn878	[0] Incremental [1] Absolute							
Pn880	Number of Bits of Encoder Re Used in the Program	esolution	0 ~ 24		0		After restart	
Pn881	Encoder Multi-turn Information Resolution	on	0 ~ 20		0	1	After restart	
	Drive Power Level		h0000 ~ h02	0F	0	_	After restart	
	<i>60000</i>							
			Pn885.0: Drive Power Level					
		-	0 200W					
D 005			.1: Drive Power	r I ava	1			
Pn885			200W	LCVC	1			
			400W					
		Pn885	.2: Drive Type					
		0 1	F version					
		1						
	Pn885.3: Reserved							
Pn895	Selection of Motor Phases and Parameter Zones]	b0000 ~b111	.1	0	_	After restart	

No.	Index		Name	Range	Unit	Default				
	600i									
		P	Pn895.0: A58 Alarm Mask Bit							
		0	Enable the A58 EEROM 1 zone	alarm and use the	e phase information	on in the				
		1	Mask the A58 a parameter as the	special information	n set in the Pn					
		P	Pn895.1: Select A59 Alarm Mask Bit for Phase Information							
		0	Enable the A59 EEROM 1 zone	alarm and use the	phase informatio	n in the				
		1		darm and use the see encoder phase in		n set in the Pn				
		P	n895.2: Select A42	Alarm Mask Bit fo	or Motor Paramete	er Information				
		0	The A42 alarm operation is not	is not masked, and supported.	d drive-motor pov	ver mismatch				
		1	The A42 alarm operation is sup	is masked, and droported.	ive-motor power i	nismatch				
		P	Pn895.3: Type of Motor Manufacturer							
		0	0 ESTUN Motors							
		1	Third-party Mo	otors						

No.	Index	Na	me	Rar	nge	Unit	Default
Pn914	Asynchronous Drag Uq Amplitude	;	0 ~ 1000		100	‰	After restart
1 11914	The Voltage scale in thousands (%	o)					
Pn915	Asynchronous Drag Frequency		1 ~ 100		30	_	After restart
1 11913	_						
Pn916	Current Loop Bandwidth Setpoint		800 ~ 1200		850	Hz	After restart
111/10	_						
Pn917	Percentage of Deadband Compens	ation	0 ~ 100		0	%	After restart
111717	_						
	Binary Bit Parameter		b0000 ~ b00	11	0000	_	After restart
Pn920	1	Pn920.	Ordinary mode Test mode 1: g Power-Up Fu Mask the analog Analog power-u 2: Reserved	nction	ower-up fund		
		'n920.	3: Reserved		T	I	
	Hexadecimal Bit Parameter		h0000 ~ h00	05	0000	_	After restart

No.	Index	Name	Range	Unit	Default
Pn921		1 Velocity loop	frequency domain frequency domain frequency domain step sweep		
		Pn921.3: Reserved			

No.	Index	Name	Range	Unit	Default
D::022	Current Loop Step Test Id % Given	0 ~ 300	0	%	_
Pn922	Rated Percentage (%)				
Pn923	Current Loop Step Test Iq % Given	0 ~ 300	0	%	After restart
F11923	Rated Percentage (%)	<u>.</u>			·
Pn924	Current Given Time	0 ~ 30000	1000	62.5us	After restart
1 11924	Reserved				
Pn925	Iq % of Given Offset of Current Loc Frequency Response Test	0 ~ 500	45	%	After restart
Pn926	Iq % of Given Amplitude of Current Loop Frequency Response Test	t 1 ~ 500	30	%	After restart
	_	<u>.</u>			·
Pn927	Reserved	0~0	0	_	After restart
1 11921	Reserved				
Pn928	Given Offset for Velocity Loop Frequency Response Test Speed	0 ~ 1000	500	rpm	After restart
	_				
Pn929	Given Amplitude for Velocity Loop Frequency Response Test	1 ~ 1000	30	rpm	After restart
	_				
Pn930	Reserved	0~0	0	_	After restart
111,00	Reserved				
Pn931	DA Output Voltage Amplitude in Frequency Response Test Mode	1 ~ 50	5	0.1V	After restart
	_				
Pn932	Sweep Frequency	1 ~ 3000	50	Hz	After restart
	_				
Pn933	Reserved	0~0	0	_	After restart
	Reserved				
Pn934	Reserved	0~0	0	_	After restart
	Reserved			<u> </u>	1
Pn935	Speed Ratio per Volt in Position Lo- Frequency Domain Test	op 1 ~ 90000	10	_	After restart
The higher the value, the higher the speed during the position loop test.					
Pn938	Reserved	0~0	0	_	
	Reserved		T		
	STO Function Masking	0 ~ 1	0	_	After restart

No.	Index	Name	Range	Unit	Default
Pn939	[0] Not mask STO [1] Mask STO				

No.	Index	Name	Range	Unit	Default				
	Interrupt Cycle Time Setting	0 ~ 1	1	_	After restart				
Pn940	[0] 100us interrupt cycle [1] 125us interrupt cycle								
Pn941	EM3A Motor Field Weakening Enabl Switch	e 0 ~ 1	1	_	After restart				
P11941	[0] Shield the Field Weakening function [1] Enable the Field Weakening function								
Pn942	Field Weakening PI regulator, kp	0 ~ 9000	20	0.01	After restart				
P11942	_			•					
Pn943	Field Weakening PI regulator, ki	0 ~ 9000	4000	0.1	After restart				
	_								
Pn944	Field Weakening Idr Max Limit %	0 ~ 100	60	%	After restart				
F 11744	Max. Limit Value of Field Weakening Idr %								
	Current Loop Control Mode	0 ~ 1	0		After restart				
Pn945	[0] Voltage feed-forward decoupling control [1] Complex vector control								
Pn946	Magnetically Programmed Motor Sets Communication Frequency Enable Of Switch		1	_	After restart				
	Magnetically programmed motor sets the communication frequency to enable the on switch								
D 040	Motor Torque Limit Bias	-50 ~ 100	20	%	After restart				
Pn949	Percentage of motor torque limiting b	ias	'	•					
	Enable Tz	0 ~ 1	1	_	After restart				
Pn951	[0] Shield Tz [1] Enable Tz		,						
Pn952	Amplification of Motor Tmax and Pn401/402	100 ~ 200	100	0.01	After restart				
1 11932	The amplification of the motor Tmax and of Pn401/402 is used to increase the motor output torque when the Kt calibration is inaccurate.								
Pn953	Amplify Motor Imax	100 ~ 150	105	0.01					
1 11933	Amplify the motor Imax								
_	Alarm Self-test	0 ~ 6	0		After restart				
Pn954	To debug variables. Used to simulate [0] No alarm; [x] Trigger A.Fx	alarms and warni	ngs during ala	rm self-test.					
Pn955	Busbar Voltage Correction	-30 ~ 30	0	V	After restart				
FIIJJJ	The bus voltage value calculated from the sampling plus this value is the final voltage value used.								
Pn957	ePWM Forced Sync Enabling Bit in EC Mode	0~1	1	_	After restart				

No.	Index	Name	Range	Unit	Default
	Forced synchronization enable bit of [0] No synchronization [1] Forced synchronization (default)		EC distribution clo	ock	

No.	Index	Na	me	Rar	nge	Unit	Default
Pn960	Alarm Mask Register		b0000 ~ b11	11	b0000	_	After restart
	Alarm Mask Register		b0000 ~ b11	11	b0000	_	After restart
	60000	Pn960.	0: A37 Not masked				
		1 Masked					
		Pn960.	1: A14				
Pn960		0 1	Not masked				
		1 Masked					
		Pn960.2: A13					
		0 1	Not masked				
		1 N	Masked				
		Pn960.	3:A20				
		0 1	Not masked				
		1 1	Masked				
	Alarm Mask Register		b0000 ~ b11	11	b0000	_	重启

No.	Index	1	Name	Range	Unit	Default		
	6000	Pn96 0 1 Pn96 0	Not masked Masked 61.1: A04 Not masked					
Pn961		1	Masked					
		D _m O ₄	Pn961.2: A1C					
		0	Not masked					
		1	Masked					
		Dro	61 2. 4 1 1					
			61.3:A11					
		0	Not masked					
		1	Masked					

No.	Index		Na	ame	Rar	nge	Unit	Default	
	Alarm Mask Register	•	•	b0000 ~ b11	11	0000	_	重启	
	600 l								
		Pn962.0: A18							
			0	Not masked					
			1	Masked					
			Pn962.1: A19						
Pn962			0	Not masked					
			1	Masked					
			Pn962.2: A23						
			0	Not masked					
			1	Masked					
			Pn962	2.3:A16					
	0		0	Not masked					
		1			1 Masked				
	Alarm Mask Register	•		b0000 ~ b11	11	0000	_	重启	

No.	Index		Name	Range	Unit	Default		
Pn963	60000		963.0: A24 Not masked Masked 963.1: A1A Not masked Masked					
		Pn	Pn963.2: A1B					
		0	Not masked					
		1	Masked					
		Pn	963.3:A1F					
		0	Not masked					
		1	Masked					

No.	Index	Na	me	Rar	nge	Unit	Default
	Alarm Mask Register	'	b0000 ~ b11	11	0000	_	重启
		Pn964.0: A36 Mask Bit (NEXT52 Power Failure) 0 Not masked 1 Masked Pn964.1: A.35 Mask Bit (Control Panel Temperature Sensor					
Pn964			nected) Jot masked				
F 11704			Masked				
	1	Pn964.	2: A.1d Mask l	Bit (N	NTC Disconn	nected)	
		0 N	lot masked				
		1 N	1asked				
		Discon	3: A.34 Mask l nected)	Bit (C	Control Panel	Temperature Ser	nsor
		1 Masked					
	Alarm Mask Register		b0000 ~ b00	1	0000	_	重启
Pn965		0 N 1 M Pn965.	0: Mask Bit (E Not masked Masked 1: Reserved 2: Reserved 3: Reserved	ncode	er Position Ju	ump Alarm)	
PnA00	PCP Control Position Pulse 0	-20	00000000 to	1P		0	Immediately
111100	2 ST COMMON TOSHION THIS CO	200	0000000	11			Immodutely

No.	Index	Name	Range	Unit	Default			
	The position pulse reference corresponding	ponding to PCP con	trol contact 0					
PnA01	PCP Control Position Pulse 1	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corres	ponding to PCP con	trol contact 1					
PnA02	PCP Control Position Pulse 2	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresp	ponding to PCP con	trol contact 2					
PnA03	PCP Control Position Pulse 3	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresp	ponding to PCP con	itrol contact 3					
PnA04	PCP Control Position Pulse 4	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 4							
PnA05	PCP Control Position Pulse 5	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 5							
PnA06	PCP Control Position Pulse 6	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 6							
PnA07	PCP Control Position Pulse 7	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresp	ponding to PCP con	itrol contact 7					
PnA08	PCP Control Position Pulse 8	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresp	ponding to PCP con	trol contact 8					
PnA09	PCP Control Position Pulse 9	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corres	ponding to PCP con	trol contact 9					
PnA10	PCP Control Position Pulse 10	-2000000000 to 2000000000	1P	0	Immediately			
214110	The position pulse reference corres	ponding to PCP con	atrol contact 10					

No.	Index	Name	Range	Unit	Default			
PnA11	PCP Control Position Pulse 11	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 11							
PnA12	PCP Control Position Pulse 12	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 12							
PnA13	PCP Control Position Pulse 13	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 13							
PnA14	PCP Control Position Pulse 14	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 14							
PnA15	PCP Control Position Pulse 15	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 15							
PnA16	PCP Control Position Pulse 16	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 16							
PnA17	PCP Control Position Pulse 17	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 17							
PnA18	PCP Control Position Pulse 18	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corres	ponding to PCP con	atrol contact 18					
PnA19	PCP Control Position Pulse 19	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corres	ponding to PCP con	atrol contact 19					
PnA20	PCP Control Position Pulse 20	-2000000000 to 2000000000	1P	0	Immediately			
	The position pulse reference corresponding to PCP control contact 20							
PnA21	PCP Control Position Pulse 21	-2000000000 to 2000000000	1P	0	Immediately			
_	The position pulse reference corres	ponding to PCP con	atrol contact 21					

No.	Index	Name	Range	Unit	Default				
PnA22	PCP Control Position Pulse 22	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 22								
PnA23	PCP Control Position Pulse 23	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 23								
PnA24	PCP Control Position Pulse 24	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corres	ponding to PCP con	atrol contact 24						
PnA25	PCP Control Position Pulse 25	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 25								
PnA26	PCP Control Position Pulse 26	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 26								
PnA27	PCP Control Position Pulse 27	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 27								
PnA28	PCP Control Position Pulse 28	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresp	ponding to PCP con	atrol contact 28						
PnA29	PCP Control Position Pulse 29	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corres	ponding to PCP con	atrol contact 29						
PnA30	PCP Control Position Pulse 30	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 30								
PnA31	PCP Control Position Pulse 31	-2000000000 to 2000000000	1P	0	Immediately				
	The position pulse reference corresponding to PCP control contact 31								
PnA32	PCP Control Position Speed 0	0 to 6000	rpm	500	Immediately				
110102	The speed reference corresponding	to PCP control con	The speed reference corresponding to PCP control contact 0						

No.	Index	Name	Range	Unit	Default			
D. A 22	PCP Control Position Speed 1	0 to 6000	rpm	500	Immediately			
PnA33	The speed reference corresponding to PCP control contact 1							
D = 4.24	PCP Control Position Speed 2	0 to 6000	rpm	500	Immediately			
PnA34	The speed reference corresponding to PCP control contact 2							
PnA35	PCP Control Position Speed 3	0 to 6000	rpm	500	Immediately			
FIIA33	The speed reference corresponding	to PCP control cont	tact 3					
PnA36	PCP Control Position Speed 4	0 to 6000	rpm	500	Immediately			
111230	The speed reference corresponding	to PCP control cont	tact 4					
D. A 27	PCP Control Position Speed 5	0 to 6000	rpm	500	Immediately			
PnA37	The speed reference corresponding to PCP control contact 5							
D., A 20	PCP Control Position Speed 6	0 to 6000	rpm	500	Immediately			
PnA38	The speed reference corresponding to PCP control contact 6							
PnA39	PCP Control Position Speed 7	0 to 6000	rpm	500	Immediately			
TIAS	The speed reference corresponding to PCP control contact 7							
PnA40	PCP Control Position Speed 8	0 to 6000	rpm	500	Immediately			
FIIA40	The speed reference corresponding to PCP control contact 8							
PnA41	PCP Control Position Speed 9	0 to 6000	rpm	500	Immediately			
TIM	The speed reference corresponding	to PCP control cont	tact 9					
Dr. A 42	PCP Control Position Speed 10	0 to 6000	rpm	500	Immediately			
PnA42	The speed reference corresponding to PCP control contact 10							
D. A 42	PCP Control Position Speed 11	0 to 6000	rpm	500	Immediately			
PnA43	The speed reference corresponding	to PCP control cont	tact 11					
Dn A 44	PCP Control Position Speed 12	0 to 6000	rpm	500	Immediately			
PnA44	The speed reference corresponding	to PCP control cont	tact 12					
Dn A 45	PCP Control Position Speed 13	0 to 6000	rpm	500	Immediately			
PnA45	The speed reference corresponding	The speed reference corresponding to PCP control contact 13						

No.	Index	Name	Range	Unit	Default			
D = A 46	PCP Control Position Speed 14	0 to 6000	rpm	500	Immediately			
PnA46	The speed reference corresponding to PCP control contact 14							
PnA47	PCP Control Position Speed 15	0 to 6000	rpm	500	Immediately			
111/447	The speed reference corresponding	to PCP control con	tact 15					
PnA48	PCP Control Position Speed 16	0 to 6000	rpm	500	Immediately			
112140	The speed reference corresponding	to PCP control con	tact 16					
PnA49	PCP Control Position Speed 17	0 to 6000	rpm	500	Immediately			
111/49	The speed reference corresponding	to PCP control con	tact 17					
PnA50	PCP Control Position Speed 18	0 to 6000	rpm	500	Immediately			
THASO	The speed reference corresponding to PCP control contact 18							
PnA51	PCP Control Position Speed 19	0 to 6000	rpm	500	Immediately			
FIIASI	The speed reference corresponding to PCP control contact 19							
PnA52	PCP Control Position Speed 20	0 to 6000	rpm	500	Immediately			
TIMOZ	The speed reference corresponding to PCP control contact 20							
PnA53	PCP Control Position Speed 21	0 to 6000	rpm	500	Immediately			
THASS	The speed reference corresponding to PCP control contact 21							
PnA54	PCP Control Position Speed 22	0 to 6000	rpm	500	Immediately			
TIIAJ4	The speed reference corresponding	to PCP control con	tact 22					
PnA55	PCP Control Position Speed 23	0 to 6000	rpm	500	Immediately			
THASS	The speed reference corresponding to PCP control contact 23							
PnA56	PCP Control Position Speed 24	0 to 6000	rpm	500	Immediately			
THASO	The speed reference corresponding to PCP control contact 24							
PnA57	PCP Control Position Speed 25	0 to 6000	rpm	500	Immediately			
TIMO	The speed reference corresponding	to PCP control con	tact 25					
Dn A EQ	PCP Control Position Speed 26	0 to 6000	rpm	500	Immediately			
PnA58	The speed reference corresponding	The speed reference corresponding to PCP control contact 26						

No.	Index	Name	Range	Unit	Default			
D 450	PCP Control Position Speed 27	0 to 6000	rpm	500	Immediately			
PnA59	The speed reference corresponding to PCP control contact 27							
PnA60	PCP Control Position Speed 28	0 to 6000	rpm	500	Immediately			
THAO	The speed reference corresponding	to PCP control cont	tact 28					
PnA61	PCP Control Position Speed 29	0 to 6000	rpm	500	Immediately			
THAOT	The speed reference corresponding	to PCP control cont	tact 29					
PnA62	PCP Control Position Speed 30	0 to 6000	rpm	500	Immediately			
111/402	The speed reference corresponding	to PCP control cont	tact 30					
PnA63	PCP Control Position Speed 31	0 to 6000	rpm	500	Immediately			
PhA63	The speed reference corresponding to PCP control contact 31							
Dra A C 4	PCP Control Contact Attribute 0	h0000 to h1112	_	0	Immediately			
PnA64	The attribute corresponding to PCP control contact 0							
D. 4.65	PCP Control Contact Attribute 1	h0000 to h1112	_	0	Immediately			
PnA65	The attribute corresponding to PCP control contact 1							
Dr. A.C.C	PCP Control Contact Attribute 2	h0000 to h1112	_	0	Immediately			
PnA66	The attribute corresponding to PCP control contact 2							
D:: A (7	PCP Control Contact Attribute 3	h0000 to h1112	_	0	Immediately			
PnA67	The attribute corresponding to PCP	control contact 3						
D 460	PCP Control Contact Attribute 4	h0000 to h1112	_	0	Immediately			
PnA68	The attribute corresponding to PCP control contact 4							
D 460	PCP Control Contact Attribute 5	h0000 to h1112	_	0	Immediately			
PnA69	The attribute corresponding to PCP	control contact 5						
D 450	PCP Control Contact Attribute 6	h0000 to h1112	_	0	Immediately			
PnA70	The attribute corresponding to PCP	control contact 6						
D., A.774	PCP Control Contact Attribute 7	h0000 to h1112	_	0	Immediately			
PnA71	The attribute corresponding to PCP	control contact 7						

No.	Index	Name	Range	Unit	Default				
PnA72	PCP Control Contact Attribute 8	h0000 to h1112	_	0	Immediately				
FIIA/2	The attribute corresponding to PCP control contact 8								
PnA73	PCP Control Contact Attribute 9	h0000 to h1112	_	0	Immediately				
11075	The attribute corresponding to PCP control contact 9								
PnA74	PCP Control Contact Attribute 10	h0000 to h1112	_	0	Immediately				
110174	The attribute corresponding to PCP	control contact 10							
PnA75	PCP Control Contact Attribute 11	h0000 to h1112	_	0	Immediately				
11000	The attribute corresponding to PCP	control contact 11							
PnA76	PCP Control Contact Attribute 12	h0000 to h1112	_	0	Immediately				
112170	The attribute corresponding to PCP	control contact 12							
PnA77	PCP Control Contact Attribute 13	h0000 to h1112	_	0	Immediately				
TIM	The attribute corresponding to PCP	control contact 13							
PnA78	PCP Control Contact Attribute 14	h0000 to h1112	_	0	Immediately				
TIA76	The attribute corresponding to PCP	control contact 14							
PnA79	PCP Control Contact Attribute 15	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to PCP control contact 15								
PnA80	PCP Control Contact Attribute 16	h0000 to h1112	_	0	Immediately				
112100	The attribute corresponding to PCP	control contact 16							
PnA81	PCP Control Contact Attribute 17	h0000 to h1112	_	0	Immediately				
TIMOI	The attribute corresponding to PCP	control contact 17							
PnA82	PCP Control Contact Attribute 18	h0000 to h1112	_	0	Immediately				
1111102	The attribute corresponding to PCP	control contact 18							
PnA83	PCP Control Contact Attribute 19	h0000 to h1112	_	0	Immediately				
112100	The attribute corresponding to PCP	control contact 19							
PnA84	PCP Control Contact Attribute 20	h0000 to h1112	-	0	Immediately				
111/104	The attribute corresponding to PCP	control contact 20							

No.	Index	Name	Range	Unit	Default				
PnA85	PCP Control Contact Attribute 21	h0000 to h1112	_	0	Immediately				
PhA65	The attribute corresponding to PCP control contact 21								
PnA86	PCP Control Contact Attribute 22	h0000 to h1112	_	0	Immediately				
THAO	The attribute corresponding to PCP	control contact 22							
PnA87	PCP Control Contact Attribute 23	h0000 to h1112	_	0	Immediately				
	The attribute corresponding to PCP	control contact 23							
PnA88	PCP Control Contact Attribute 24	h0000 to h1112	_	0	Immediately				
THAO	The attribute corresponding to PCP	control contact 24							
PnA89	PCP Control Contact Attribute 25	h0000 to h1112	_	0	Immediately				
TIMO	The attribute corresponding to PCP	control contact 25							
PnA90	PCP Control Contact Attribute 26	h0000 to h1112	_	0	Immediately				
TIMO	The attribute corresponding to PCP	control contact 26							
PnA91	PCP Control Contact Attribute 27	h0000 to h1112	_	0	Immediately				
TIM	The attribute corresponding to PCP control contact 27								
PnA92	PCP Control Contact Attribute 28	h0000 to h1112	_	0	Immediately				
110172	The attribute corresponding to PCP	control contact 28							
PnA93	PCP Control Contact Attribute 29	h0000 to h1112	_	0	Immediately				
TIM93	The attribute corresponding to PCP control contact 29								
PnA94	PCP Control Contact Attribute 30	h0000 to h1112	_	0	Immediately				
110174	The attribute corresponding to PCP	control contact 30							
PnA95	PCP Control Contact Attribute 31	h0000 to h1112	_	0	Immediately				
111/1/30	The attribute corresponding to PCP	control contact 31							
PnB00	PCP Control Contact Acceleration Time 0	0 to 10000	ms	50	Immediately				
211200	The acceleration time corresponding	g to PCP control co	ntact 0						

No.	Index	Name	Range	Unit	Default				
PnB01	PCP Control Contact Acceleration Time 1	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 1								
PnB02	PCP Control Contact Acceleration Time 2	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding	g to PCP control co	ntact 2						
PnB03	PCP Control Contact Acceleration Time 3	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding	g to PCP control co	ntact 3						
PnB04	PCP Control Contact Acceleration Time 4	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding	g to PCP control co	ntact 4						
PnB05	PCP Control Contact Acceleration Time 5	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 5								
PnB06	PCP Control Contact Acceleration Time 6	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 6								
PnB07	PCP Control Contact Acceleration Time 7	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 7								
PnB08	PCP Control Contact Acceleration Time 8	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding	g to PCP control co	ntact 8						
PnB09	PCP Control Contact Acceleration Time 9	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 9								
PnB10	PCP Control Contact Acceleration Time 10	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding	g to PCP control co	ntact 10						
PnB11	PCP Control Contact Acceleration Time 11	0 to 10000	ms	50	Immediately				
11.011	The acceleration time corresponding	g to PCP control co	ntact 11						

No.	Index	Name	Range	Unit	Default				
PnB12	PCP Control Contact Acceleration Time 12	0 to 10000	ms	50	Immediately				
	The acceleration time corresponding to PCP control contact 12								
PnB13	PCP Control Contact Acceleration Time 13	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 13						
PnB14	PCP Control Contact Acceleration Time 14	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 14						
PnB15	PCP Control Contact Acceleration Time 15	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 15						
PnB16	PCP Control Contact Acceleration Time 16	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 16						
PnB17	PCP Control Contact Acceleration Time 17	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 17						
PnB18	PCP Control Contact Acceleration Time 18	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 18						
PnB19	PCP Control Contact Acceleration Time 19	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 19						
PnB20	PCP Control Contact Acceleration Time 20	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 20						
PnB21	PCP Control Contact Acceleration Time 21	0 to 10000	ms	50	Immediately				
	The acceleration time correspondin	g to PCP control co	ntact 21						
PnB22	PCP Control Contact Acceleration Time 22	0 to 10000	ms	50	Immediately				
111044	The acceleration time correspondin	g to PCP control co	ntact 22						

No.	Index	Name	Range	Unit	Default					
PnB23	PCP Control Contact Acceleration Time 23	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding to PCP control contact 23									
PnB24	PCP Control Contact Acceleration Time 24	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	g to PCP control co	ntact 24							
PnB25	PCP Control Contact Acceleration Time 25	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	g to PCP control co	ntact 25							
PnB26	PCP Control Contact Acceleration Time 26	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	g to PCP control co	ntact 26							
PnB27	PCP Control Contact Acceleration Time 27	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	g to PCP control co	ntact 27							
PnB28	PCP Control Contact Acceleration Time 28	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	he acceleration time corresponding to PCP control contact 28								
PnB29	PCP Control Contact Acceleration Time 29	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	g to PCP control co	ntact 29							
PnB30	PCP Control Contact Acceleration Time 30	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	g to PCP control co	ntact 30							
PnB31	PCP Control Contact Acceleration Time 31	0 to 10000	ms	50	Immediately					
	The acceleration time corresponding	g to PCP control co	ntact 31							
PnB32	PCP Control Contact Deceleration Time 0	0 to 10000	ms	50	Immediately					
	The deceleration time corresponding	g to PCP control co	entact 0							
PnB33	PCP Control Contact Deceleration Time 1	0 to 10000	ms	50	Immediately					
11.000	The deceleration time corresponding	g to PCP control co	ntact 1							

No.	Index	Name	Range	Unit	Default				
PnB34	PCP Control Contact Deceleration Time 2	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 2								
PnB35	PCP Control Contact Deceleration Time 3	0 to 10000	ms	50	Immediately				
	The deceleration time correspondin	g to PCP control co	entact 3						
PnB36	PCP Control Contact Deceleration Time 4	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 4						
PnB37	PCP Control Contact Deceleration Time 5	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 5						
PnB38	PCP Control Contact Deceleration Time 6	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 6								
PnB39	PCP Control Contact Deceleration Time 7	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 7								
PnB40	PCP Control Contact Deceleration Time 8	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 8								
PnB41	PCP Control Contact Deceleration Time 9	0 to 10000	ms	50	Immediately				
	The deceleration time correspondin	g to PCP control co	entact 9						
PnB42	PCP Control Contact Deceleration Time 10	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 10								
PnB43	PCP Control Contact Deceleration Time 11	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	ontact 11						
PnB44	PCP Control Contact Deceleration Time 12	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 12						

No.	Index	Name	Range	Unit	Default				
PnB45	PCP Control Contact Deceleration Time 13	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 13								
PnB46	PCP Control Contact Deceleration Time 14	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	ntact 14						
PnB47	PCP Control Contact Deceleration Time 15	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 15						
PnB48	PCP Control Contact Deceleration Time 16	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 16								
PnB49	PCP Control Contact Deceleration Time 17	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 17								
PnB50	PCP Control Contact Deceleration Time 18	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 18								
PnB51	PCP Control Contact Deceleration Time 19	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 19								
PnB52	PCP Control Contact Deceleration Time 20	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	ontact 20						
PnB53	PCP Control Contact Deceleration Time 21	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 21						
PnB54	PCP Control Contact Deceleration Time 22	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 22						
PnB55	PCP Control Contact Deceleration Time 23	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 23						

No.	Index	Name	Range	Unit	Default				
PnB56	PCP Control Contact Deceleration Time 24	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 24								
PnB57	PCP Control Contact Deceleration Time 25	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 25								
PnB58	PCP Control Contact Deceleration Time 26	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	ntact 26						
PnB59	PCP Control Contact Deceleration Time 27	0 to 10000	ms	50	Immediately				
111209	The deceleration time corresponding	g to PCP control co	entact 27						
PnB60	PCP Control Contact Deceleration Time 28	0 to 10000	ms	50	Immediately				
111200	The deceleration time corresponding to PCP control contact 28								
PnB61	PCP Control Contact Deceleration Time 29	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding to PCP control contact 29								
PnB62	PCP Control Contact Deceleration Time 30	0 to 10000	ms	50	Immediately				
	The deceleration time corresponding	g to PCP control co	entact 30						
PnB63	PCP Control Contact Deceleration Time 31	0 to 10000	ms	50	Immediately				
	The deceleration time correspondin	g to PCP control co	entact 31						
PnB64	PCP Control Contact Delay 0	0 to 10000	ms	100	Immediately				
rnb04	The delay time corresponding to PC	CP control contact 0							
PnB65	PCP Control Contact Delay 1	0 to 10000	ms	100	Immediately				
1 11000	The delay time corresponding to PC	CP control contact 1							
PpR64	PCP Control Contact Delay 2	0 to 10000	ms	100	Immediately				
PnB66	The delay time corresponding to PC	CP control contact 2							

No.	Index	Name	Range	Unit	Default					
D., D. 7	PCP Control Contact Delay 3	0 to 10000	ms	100	Immediately					
PnB67	The delay time corresponding to PCP control contact 3									
D., D.(0	PCP Control Contact Delay 4	0 to 10000	ms	100	Immediately					
PnB68	The delay time corresponding to PCP control contact 4									
PnB69	PCP Control Contact Delay 5	0 to 10000	ms	100	Immediately					
111009	The delay time corresponding to PC	CP control contact 5								
PnB70	PCP Control Contact Delay 6	0 to 10000	ms	100	Immediately					
FIID/U	The delay time corresponding to PC	CP control contact 6								
D. D.71	PCP Control Contact Delay 7	0 to 10000	ms	100	Immediately					
PnB71	The delay time corresponding to PC	CP control contact 7								
D 1070	PCP Control Contact Delay 8	0 to 10000	ms	100	Immediately					
PnB72	The delay time corresponding to PC	CP control contact 8								
PnB73	PCP Control Contact Delay 9	0 to 10000	ms	100	Immediately					
FIID/3	The delay time corresponding to PC	CP control contact 9								
PnB74	PCP Control Contact Delay 10	0 to 10000	ms	100	Immediately					
PND/4	The delay time corresponding to PC	CP control contact 1	0							
PnB75	PCP Control Contact Delay 11	0 to 10000	ms	100	Immediately					
PND/5	The delay time corresponding to PC	CP control contact 1	1							
Dr. D7.	PCP Control Contact Delay 12	0 to 10000	ms	100	Immediately					
PnB76	The delay time corresponding to PC	PCP control contact 12								
D., D77	PCP Control Contact Delay 13	0 to 10000	ms	100	Immediately					
PnB77	The delay time corresponding to PC	CP control contact 1	3							
D., D.70	PCP Control Contact Delay 14	0 to 10000	ms	100	Immediately					
PnB78	The delay time corresponding to PC	CP control contact 1	4							
D ₂ D70	PCP Control Contact Delay 15	0 to 10000	ms	100	Immediately					
PnB79	The delay time corresponding to PC	CP control contact 1	5							

No.	Index	Name	Range	Unit	Default				
D. D00	PCP Control Contact Delay 16	0 to 10000	ms	100	Immediately				
PnB80	The delay time corresponding to PCP control contact 16								
PnB81	PCP Control Contact Delay 17	0 to 10000	ms	100	Immediately				
111001	The delay time corresponding to PO	CP control contact 1	7						
PnB82	PCP Control Contact Delay 18	0 to 10000	ms	100	Immediately				
111002	The delay time corresponding to PO	CP control contact 1	8						
PnB83	PCP Control Contact Delay 19	0 to 10000	ms	100	Immediately				
111003	The delay time corresponding to PO	CP control contact 1	9						
PnB84	PCP Control Contact Delay 20	0 to 10000	ms	100	Immediately				
111004	The delay time corresponding to PO	CP control contact 2	0						
PnB85	PCP Control Contact Delay 21	0 to 10000	ms	100	Immediately				
FIIDOS	The delay time corresponding to PO	e delay time corresponding to PCP control contact 21							
PnB86	PCP Control Contact Delay 22	0 to 10000	ms	100	Immediately				
FIIDOO	The delay time corresponding to PO	CP control contact 2	contact 22						
PnB87	PCP Control Contact Delay 23	0 to 10000	ms	100	Immediately				
FIIDO/	The delay time corresponding to PCP control contact 23								
PnB88	PCP Control Contact Delay 24	0 to 10000	ms	100	Immediately				
111000	The delay time corresponding to PO	CP control contact 2	4						
PnB89	PCP Control Contact Delay 25	0 to 10000	ms	100	Immediately				
FIID09	The delay time corresponding to PO	The delay time corresponding to PCP control contact 25							
PnB90	PCP Control Contact Delay 26	0 to 10000	ms	100	Immediately				
111090	The delay time corresponding to PO	CP control contact 2	6						
Dr. D01	PCP Control Contact Delay 27	0 to 10000	ms	100	Immediately				
PnB91	The delay time corresponding to PO	CP control contact 2	7						
D ₁₀ DO2	PCP Control Contact Delay 28	0 to 10000	ms	100	Immediately				
PnB92	The delay time corresponding to PO	CP control contact 2	8						

No.	Index	Name Range		Unit	Default				
PnB93	PCP Control Contact Delay 29	0 to 10000	ms	100	Immediately				
	The delay time corresponding to PCP control contact 29								
D. DO4	PCP Control Contact Delay 30	0 to 10000	ms	100	Immediately				
PnB94	The delay time corresponding to PC	CP control contact 3	0						
D. DOE	PCP Control Contact Delay 31	0 to 10000	ms	100	Immediately				
PnB95	The delay time corresponding to PC	CP control contact 3	1		Immediately				

Chapter 12 Object Dictionary

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
1000		VAR	device_type	UINT32	RO	NO	•						
1001		VAR	error_register	UINT8	RO	NO	•						
1003		VAR	pre_defined_error_field	UINT8	RW	NO	•						
1005		VAR	cob_id_sync	UINT32	RW	NO	•						
1006		VAR	communication_cycle_period	UINT32	RW	NO	•						
1007		VAR	synchronous_window_length	UINT32	RW	NO	•						
1014		VAR	cob_id_emergency_message	UINT32	RW	NO	•						
			consumer_heartbeat_time				•						
1016	0	ARRAY	number_of_entries	UINT8	RO	NO	•						
	1		consumer_heartbeat_time1	UINT32	RW	NO	•						
1017		VAR	producer_heartbeat_time	UINT16	RW	NO	•						
			identity_object				•						
	0		number_of_entries	UINT8	RO	NO	•						
1010	1		vendor_id	UINT32	RO	NO	•						
1018	2	RECORD	product_code	UINT32	RO	NO	•						
	3]	revision_number	UINT32	RO	NO	•						
	4		serial_number	UINT32	RO	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
			error_behaviour				•						
1020	0		number_of_entries	UINT8	RO	NO	•						
1029	1	ARRAY	communication_error	UINT8	RW	NO	•						
			server_sdo_parameter				•						
1200	0	RECORD	number_of_entries	UINT8	RO	NO	•						
	1		cob_id_client_server	UINT32	RO	NO	•						
	2		cob_id_server_client	UINT32	RO	NO	•						
			receive_pdo_parameter_rpdo1				•						
1400	0	RECORD	number_of_entries_rpdo1	UINT8	RO	NO	•						
1400	1	RECORD	cob_id_used_by_pdo_rpdo1	UINT32	RO	NO	•						
	2		transmission_type_rpdo1	UINT8	RW	NO	•						
			receive_pdo_parameter_rpdo2				•						
1401	0	RECORD	number_of_entries_rpdo2	UINT8	RO	NO	•						
1401	1	RECORD	cob_id_used_by_pdo_rpdo2	UINT32	RO	NO	•						
	2		transmission_type_rpdo2	UINT8	RW	NO	•						
			receive_pdo_parameter_rpdo3				•						
1402	0	RECORD	number_of_entries_rpdo3	UINT8	RO	NO	•						
1702	1	RECORD	cob_id_used_by_pdo_rpdo3	UINT32	RO	NO	•						
	2		transmission_type_rpdo3	UINT8	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
			receive_pdo_parameter_rpdo4				•						
1403	0	RECORD	number_of_entries_rpdo4	UINT8	RO	NO	•						
1403	1	RECORD	cob_id_used_by_pdo_rpdo4	UINT32	RO	NO	•						
	2		transmission_type_rpdo4	UINT8	RW	NO	•						
			receive_pdo_mapping_rpdo1				•						
	0		number_of_entries	UINT8	RO	NO	•						
1600	1	RECORD	first_mapped_object_rpdo1	UINT32	RW	NO	•						
1000	2	RECORD	second_mapped_object_rpdo1	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo1	UINT32	RW	NO	•						
	4		fourth_mapped_object_rpdo1	UINT32	RW	NO	•						
			receive_pdo_mapping_rpdo2				•						
	0		number_of_entries	UINT8	RO	NO	•						
1601	1	RECORD	first_mapped_object_rpdo2	UINT32	RW	NO	•						
1001	2	RECORD	second_mapped_object_rpdo2	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo2	UINT32	RW	NO	•						
	4		fourth_mapped_object_rpdo2	UINT32	RW	NO	•						
			receive_pdo_mapping_rpdo3				•						
	0		number_of_entries	UINT8	RO	NO	•						
1602	1	RECORD	first_mapped_object_rpdo3	UINT32	RW	NO	•						
	2		second_mapped_object_rpdo3	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo3	UINT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
	4		fourth_mapped_object_rpdo3	UINT32	RW	NO	•						
			receive_pdo_mapping_rpdo4				•						
	0		number_of_entries	UINT8	RO	NO	•						
1603	1	RECORD	first_mapped_object_rpdo4	UINT32	RW	NO	•						
1003	2	RECORD	second_mapped_object_rpdo4	UINT32	RW	NO	•						
	3		third_mapped_object_rpdo4	UINT32	RW	NO	•						
	4		fourth_mapped_object_rpdo4	UINT32	RW	NO	•						
			transmit_pdo_parameter_tpdo1				•						
	0		number_of_entries_tpdo1	UINT32	RO	NO	•						
1800	1	RECORD	cob_id_used_by_pdo_tpdo1	UINT32	RO	NO	•						
1800	2	RECORD	transmission_type_tpdo1	UINT8	RW	NO	•						
	3		inhibit_time_tpdo1	UINT16	RW	NO	•						
	5		event_timer_tpdo1	UINT16	RW	NO	•						
			transmit_pdo_parameter_tpdo2				•						
	0		number_of_entries_tpdo2	UINT32	RO	NO	•						
1801	1	RECORD	cob_id_used_by_pdo_tpdo2	UINT32	RO	NO	•						
1001	2	KECUKD	transmission_type_tpdo2	UINT8	RW	NO	•						
	3		inhibit_time_tpdo2	UINT16	RW	NO	•						
	5		event_timer_tpdo2	UINT16	RW	NO	•						
1802		RECORD	transmit_pdo_parameter_tpdo3				•						
1802	0	RECORD	number_of_entries_tpdo3	UINT32	RO	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
	1		cob_id_used_by_pdo_tpdo3	UINT32	RO	NO	•						
	2		transmission_type_tpdo3	UINT8	RW	NO	•						
	3		inhibit_time_tpdo3	UINT16	RW	NO	•						
	5		event_timer_tpdo3	UINT16	RW	NO	•						
			transmit_pdo_parameter_tpdo4				•						
	0		number_of_entries_tpdo4	UINT32	RO	NO	•						
1803	1	RECORD	cob_id_used_by_pdo_tpdo4	UINT32	RO	NO	•						
1803	2	RECORD	transmission_type_tpdo4	UINT8	RW	NO	•						
	3		inhibit_time_tpdo4	UINT16	RW	NO	•						
	5		event_timer_tpdo4	UINT16	RW	NO	•						
			transmit_pdo_mapping_tpdo1				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A00	1	RECORD	first_mapped_object_tpdo1	UINT32	RW	NO	•						
IAOO	2	RECORD	second_mapped_object_tpdo1	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo1	UINT32	RW	NO	•						
	4		fourth_mapped_object_tpdo1	UINT32	RW	NO	•						
			transmit_pdo_mapping_tpdo2				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A01	1	RECORD	first_mapped_object_tpdo2	UINT32	RW	NO	•						
	2		second_mapped_object_tpdo2	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo2	UINT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
	4		fourth_mapped_object_tpdo2	UINT32	RW	NO	•						
			transmit_pdo_mapping_tpdo3				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A02	1	RECORD	first_mapped_object_tpdo3	UINT32	RW	NO	•						
1A02	2	RECORD	second_mapped_object_tpdo3	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo3	UINT32	RW	NO	•						
	4		fourth_mapped_object_tpdo3	UINT32	RW	NO	•						
			transmit_pdo_mapping_tpdo4				•						
	0		number_of_entries	UINT8	RO	NO	•						
1A03	1	RECORD	first_mapped_object_tpdo4	UINT32	RW	NO	•						
1A03	2	RECORD	second_mapped_object_tpdo4	UINT32	RW	NO	•						
	3		third_mapped_object_tpdo4	UINT32	RW	NO	•						
	4		fourth_mapped_object_tpdo4	UINT32	RW	NO	•						
			mask_tpdo1				•						
2000	0	RECORD	number_of_entries	UINT8	RO	NO	•						
2000	1	RECORD	mask1_tpdo1	UINT32	RW	NO	•						
	2		mask2_tpdo1	UINT32	RW	NO	•						
			mask_tpdo2				•						
2001	0	RECORD	number_of_entries	UINT8	RO	NO	•						
2001	1	RECURD	mask1_tpdo2	UINT32	RW	NO	•						
	2		mask2_tpdo2	UINT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
			mask_tpdo3				•						
2002	0	RECORD	number_of_entries	UINT8	RO	NO	•						
2002	1	RECORD	mask1_tpdo3	UINT32	RW	NO	•						
	2		mask2_tpdo3	UINT32	RW	NO	•						
			mask_tpdo4				•						
2003	0	RECORD	number_of_entries	UINT8	RO	NO	•						
2003	1	RECORD	mask1_tpdo4	UINT32	RW	NO	•						
	2		mask2_tpdo4	UINT32	RW	NO	•						
2105	0	VAR	sync_time_period	UINT32	RW	NO	•						
30A5		VAR	SinglePos	UINT32	RO	YES	•						pulse
30A6		VAR	MultiPos	UINT32	RO	YES	•						
30A7		VAR	HomingStatus	UINT16	RW	NO	•						
30A8		VAR	ExtEncPosition	INT32	RO	YES	•						pulse
30A9		VAR	MultiPosAfterProc	UINT32	RO	YES	•						
30AA		VAR	ActualPosAfterProc	UINT32	RO	YES	•						pulse
3164		VAR	Pn000 Basic Function Selections 0	INT32	RW	NO	•						
3165		VAR	Pn001 Basic Function Selections	INT32	RW	NO	•						
3166		VAR	Pn002 Application Function Selections 2	INT32	RW	NO	•						
3167		VAR	Pn003 Application Function Selections 3	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3168		VAR	Pn004 Application Function Selections 4	INT32	RW	NO	•						
3169		VAR	Pn005 Application Function Selections 5	INT32	RW	NO	•						
316A		VAR	Pn006 Application Function Selections 6	INT32	RW	NO	•						
316B		VAR	Pn007 Application Function Selections 7	INT32	RW	NO	•						
316C		VAR	Pn008 Power On Options	INT32	RW	NO	•						
316D		VAR	Pn009 Application Function Selections 9	INT32	RW	NO	•						
31C8		VAR	Pn100 Tuning Function Selection	INT32	RW	NO	•						
31C9		VAR	Pn101 Response Frequency Level	INT32	RW	NO	•						Hz
31CA		VAR	Pn102 Speed Loop Gain	INT32	RW	NO	•						rad/s
31CB		VAR	Pn103 Speed Loop Integral Time	INT32	RW	NO	•						0.1ms
31CC		VAR	Pn104 Position Loop Gain	INT32	RW	NO	•						1/s
31CD		VAR	Pn105 Torque Reference Filter Time Constant	INT32	RW	NO	•						0.01ms
31CE		VAR	Pn106 Load Inertia Percentage	INT32	RW	NO	•						%
31CF		VAR	Pn107 Second Speed Loop Gain	INT32	RW	NO	•						rad/s
31D0		VAR	Pn108 Second Speed Loop Integral Time	INT32	RW	NO	•						0.1ms

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
31D1		VAR	Pn109 Second Position Loop Gain	INT32	RW	NO	•						1/s
31D2		VAR	Pn110 Second Torque Reference Filter Time Constant	INT32	RW	NO	•						0.01ms
31D4		VAR	Pn112 Speed Feedforward	INT32	RW	NO	•						%
31D5		VAR	Pn113 Speed Feedforward Filter Time Constant	INT32	RW	NO	•						0.1ms
31D6		VAR	Pn114 Torque Feedforward	INT32	RW	NO	•						%
31D7		VAR	Pn115 Torque Feedforward Filter Time Constant	INT32	RW	NO	•						0.1ms
31D8		VAR	Pn116 P/PI Switching Conditions	INT32	RW	NO	•						
31D9		VAR	Pn117 P/PI Switching Level for Torque Reference	INT32	RW	NO	•						%
31DA		VAR	Pn118 P/PI Switching Level for Position Deviation	INT32	RW	NO	•						pulse
31DB		VAR	Pn119 P/PI Switching Level for Acceleration	INT32	RW	NO	•						10rmp/s
31DC		VAR	Pn120 P/PI Switching Level for Speed Reference	INT32	RW	NO	•						rpm
31DD		VAR	Pn121 Gain Switching Conditions	INT32	RW	NO	•						
31DE		VAR	Pn122 Gain Switching Waiting Time	INT32	RW	NO	•						0.1ms
31DF		VAR	Pn123 Gain Switching Level	INT32	RW	NO	•						
31E0		VAR	Pn124 Speed Level	INT32	RW	NO	•						rpm

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
31E1		VAR	Pn125 Position Gain Switching Time	INT32	RW	NO	•						0.1ms
31E2		VAR	Pn126 Gain Switching Hysteresis	INT32	RW	NO	•						
31E3		VAR	Pn127 Speed Measurement Filter at Low Speed	INT32	RW	NO	•						1 cycle
31E6		VAR	Pn130 Friction Compensation Gain	INT32	RW	NO	•						0.1%Tn
31E7		VAR	Pn131 Friction Compensation Speed Hysteresis	INT32	RW	NO	•						rpm
31E8		VAR	Pn132 Friction Damping Proportion	INT32	RW	NO	•						0.1%Tn/1000rpm
31EB		VAR	Pn135 Speed Feedback Filter Time	INT32	RW	NO	•						0.01ms
31FA		VAR	Pn150 Control-Related Selections	INT32	RW	NO	•						
31FB		VAR	Pn151 Model Following Control Gain	INT32	RW	NO	•						1/s
31FC		VAR	Pn152 Model Following Control Gain Correction	INT32	RW	NO	•						%
31FD		VAR	Pn153 Model Following Control Speed Feedforward Coefficient	INT32	RW	NO	•						%
31FE		VAR	Pn154 Model Following Control Torque Feedforward Coefficient	INT32	RW	NO	•						%
31FF		VAR	Pn155 Anti-Resonance Frequency for Jitter Suppression	INT32	RW	NO	•						0.1Hz
3200		VAR	Pn156 Filter Time Constant for Jitter Suppression	INT32	RW	NO	•						0.1ms

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	oort					Unit
							All	IP	PP	PV	PT	НМ	
3201		VAR	Pn157 Low frequency jitter suppression speed feedforward compensation amount limiting	INT32	RW	NO	•						rpm
3204		VAR	Pn160 Load Disturbance Compensation	INT32	RW	NO	•						%
3205		VAR	Pn161 Load Disturbance Detection Gain	INT32	RW	NO	•						Hz
3206		VAR	Pn162 Use Estimated Speed	INT32	RW	NO	•						
3208		VAR	Pn164 PJOG0 Rotation Number	INT32	RW	NO	•						rev
3209		VAR	Pn165 PJOG0 Rotation Speed	INT32	RW	NO	•						rpm
320A		VAR	Pn166 PJOG0 Acceleration/Deceleration Time	INT32	RW	NO	•						ms
320B		VAR	Pn167 PJOG0 Stop Time	INT32	RW	NO							ms
320C		VAR	Pn168 PJOG1 Rotation Number	INT32	RW	NO	•						rev
320D		VAR	Pn169 PJOG1 Rotation Speed	INT32	RW	NO	•						rpm
320E		VAR	Pn170 PJOG1 Acceleration/Deceleration Time	INT32	RW	NO	•						ms
320F		VAR	Pn171 PJOG1 Stop Time	INT32	RW	NO	•						ms
3210		VAR	Pn172 Moment of Inertia Calculation Amount	INT32	RW	NO	•						
3211		VAR	Pn173 Vibration Suppression Frequency at Intermediate- Frequency	INT32	RW	NO	•						Hz
3212		VAR	Pn174 Vibration Suppression Bandwidth Adjustment at Intermediate-Frequency	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3213		VAR	Pn175 Vibration Suppression Damping Gain at Intermediate- Frequency	INT32	RW	NO	•						
3214		VAR	Pn176 Vibration Suppression Lowpass Filter Time at Intermediate-Frequency	INT32	RW	NO	•						0.1ms
3215		VAR	Pn177 Vibration Suppression Highpass Filter Time at Intermediate-Frequency	INT32	RW	NO	•						0.1ms
3216		VAR	Pn178 Vibration Suppression Proportional Attenuation Gain at Intermediate-Frequency	INT32	RW	NO	•						
3217		VAR	Pn179 Vibration Amplitude Detection Level	INT32	RW	NO	•						
3218		VAR	Pn180 Vibration Frequency Detection Level	INT32	RW	NO	•						Hz
3219		VAR	Pn181 Notch Filter Frequency 1	INT32	RW	NO	•						Hz
321A		VAR	Pn182 Notch Filter Depth 1	INT32	RW	NO	•						
321B		VAR	Pn183 Notch Filter Width 1	INT32	RW	NO	•						
321C		VAR	Pn184 Notch Filter Frequency 2	INT32	RW	NO	•						Hz
321D		VAR	Pn185 Notch Filter Depth 2	INT32	RW	NO	•						
321E		VAR	Pn186 Notch Filter Width 2	INT32	RW	NO	•						
321F		VAR	Pn187 Notch Filter Frequency 3	INT32	RW	NO	•						Hz
3220		VAR	Pn188 Notch Filter Depth 3	INT32	RW	NO	•						
3221		VAR	Pn189 Notch Filter Width 3	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3222		VAR	Pn190 Automatic Vibration Suppression State	INT32	RW	NO	•						
3223		VAR	Pn191 Vibration Frequency Detection Level	INT32	RW	NO	•						
322C		VAR	Pn200 Pulse Numbers for PG Frequency Division	INT32	RW	NO	•						pulse
3233		VAR	Pn207 Homing locked-rotor torque	INT32	RW	NO	•						%Tn
3234		VAR	Pn208 Homing locked-rotor time	INT32	RW	NO	•						1 cycle
3236		VAR	Pn210 2nd Encoder Functions 1	INT32	RW	NO	•						
3237		VAR	Pn211 2nd Encoder Functions 2	INT32	RW	NO	•						
3238		VAR	Pn212 2nd Encoder Resolution	INT32	RW	NO	•						pulse
3239		VAR	Pn213 Position Deviation Overflow Warning Level at Fully Closed-loop Control	INT32	RW	NO	•						pulse
323A		VAR	Pn214 Position Deviation Reset Level at Fully Closed-loop Control	INT32	RW	NO	•						%
3245		VAR	Pn225 Encoder delay compensation mode	INT32	RW	NO	•						
3246		VAR	Pn226 Encoder delay manual compensation value	INT32	RW	NO	•						10ns
3248		VAR	Pn228 User Defined Multi- Resolution	INT32	RW	NO	•						
3294		VAR	Pn304 Parameter Reference Speed	INT32	RW	NO	•						rpm

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3295		VAR	Pn305 JOG Speed	INT32	RW	NO	•						rpm
3296		VAR	Pn306 Soft Start Acceleration Time	INT32	RW	NO	•						ms
3297		VAR	Pn307 Soft Start Deceleration Time	INT32	RW	NO	•						ms
3298		VAR	Pn308 Speed Feedback Filter Time Constant	INT32	RW	NO	•						ms
3299		VAR	Pn309 S-Curve Rise Time	INT32	RW	NO	•						ms
329A		VAR	Pn310 Speed Reference Curve Form	INT32	RW	NO	•						
329B		VAR	Pn311 S-Curve Selection	INT32	RW	NO	•						
32A7		VAR	Pn323 Overspeed Detection Level	INT32	RW	NO	•						rpm
32AF		VAR	Pn331 Touch Probe Signal Allocation	INT32	RW	NO	•						
32B0		VAR	Pn332 Touch Probe Filtering Time	INT32	RW	NO	•						10ns
32B1		VAR	Pn333 Touch Probe Singal Inverts	INT32	RW	NO	•						
32F5		VAR	Pn401 Forward Internal Torque Limit	INT32	RW	NO	•						%
32F6		VAR	Pn402 Reverse Internal Torque Limit	INT32	RW	NO	•						%
32F7		VAR	Pn403 Forward External Torque Limit	INT32	RW	NO	•						%

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
32F8		VAR	Pn404 Reverse External Torque Limit	INT32	RW	NO	•						%
32F9		VAR	Pn405 Reverse Brake Torque Limit	INT32	RW	NO	•						%
32FA		VAR	Pn406 Torque Limit at Undervoltage	INT32	RW	NO	•						%
32FB		VAR	Pn407 Release Time for Torque Limit at Undervoltage	INT32	RW	NO	•						ms
32FC		VAR	Pn408 Speed Limit during Torque Control	INT32	RW	NO	•						rpm
3358		VAR	Pn500 Positioning Completed Width	INT32	RW	NO	•						pulse
3359		VAR	Pn501 Speed Coincidence Signal Detection Width	INT32	RW	NO	•						rpm
335B		VAR	Pn503 Rotation Detection Speed	INT32	RW	NO	•						rpm
335C		VAR	Pn504 Deviation Counter Overflow Alarm	INT32	RW	NO	•						1 pulse
335D		VAR	Pn505 Servo ON Waiting Time	INT32	RW	NO	•						ms
335E		VAR	Pn506 Brake Reference-Servo OFF Delay Time	INT32	RW	NO	•						10ms
335F		VAR	Pn507 Brake Reference Waiting Speed	INT32	RW	NO	•						rpm
3360		VAR	Pn508 Brake Reference Waiting Time	INT32	RW	NO	•						10ms
3361		VAR	Pn509 Input Signal Allocations 1	INT32	RW	NO	•						
3362		VAR	Pn510 Input Signal Allocations 2	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3363		VAR	Pn511 Output Signal Allocations	INT32	RW	NO	•						
3364		VAR	Pn512 Input Contact Data (Low Bits) at Bus Control	INT32	RW	NO	•						
3365		VAR	Pn513 Input Contact Data (High Bit) at Bus Control	INT32	RW	NO	•						
3366		VAR	Pn514 Input Signals Filter Time	INT32	RW	NO	•						1 cycle
3367		VAR	Pn515 Alarm Signals Filter Time	INT32	RW	NO	•						2 cycle
3368		VAR	Pn516 Input Singal Inverts 1	INT32	RW	NO	•						
3369		VAR	Pn517 Input Singal Inverts 2	INT32	RW	NO	•						
336A		VAR	Pn518 Dynamic Brake Time	INT32	RW	NO	•						0.5ms
336B		VAR	Pn519 Serial Encoder Error Allowed Time	INT32	RW	NO	•						1 cycle
336C		VAR	Pn520 Positioning Completion Time	INT32	RW	NO	•						0.1ms
336D		VAR	Pn521 Alarm Masks 1	INT32	RW	NO	•						
3371		VAR	Pn525 Overload Alarm Level	INT32	RW	NO	•						%
3374		VAR	Pn528 Ouput Signal Inverts	INT32	RW	NO	•						
3375		VAR	Pn529 Torque Detection Signal Output Level	INT32	RW	NO	•						%
3376		VAR	Pn530 Torque Detection Signal Ouput Time	INT32	RW	NO	•						ms
3379		VAR	Pn533 Dynamic Brake Current Detection Level	INT32	RW	NO	•						mA

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
337A		VAR	Pn534 IPM Junction Temperature Detection Level	INT32	RW	NO	•						°C
337B		VAR	Pn535 Discharging Resistor Resistance	INT32	RW	NO	•						Ω
337C		VAR	Pn536 Discharging Resistor Power	INT32	RW	NO	•						W
337E		VAR	Pn538 Momentary Power Interruption Hold Time	INT32	RW	NO	•						1 cycle
337F		VAR	Pn539 Pumping Turn ON Delay Time	INT32	RW	NO	•						ms
3380		VAR	Pn540 Pumping Turn OFF Delay Time	INT32	RW	NO	•						ms
3381		VAR	Pn541 Motion Err Iqr Threshold	INT32	RW	NO	•						% In
3382		VAR	Pn542 Motion Err Acc Threshold	INT32	RW	NO	•						krpm/s
3423		VAR	Pn703 CAN baut	INT32	RW	NO	•						
3424		VAR	Pn704 Device Node Number	INT32	RW	NO	•						
3434		VAR	Pn720 Homing Mode	INT32	RW	NO	•						
3435		VAR	Pn721 Research Reference Point Speed	INT32	RW	NO	•						0.1rpm
3436		VAR	Pn722 Origin Research Speed	INT32	RW	NO	•						0.1rpm
3437		VAR	Pn723 Origin Research Acceleration	INT32	RW	NO	•						0.1r/m/s
3438		VAR	Pn724 Origin Return Offset Pulse	INT32	RW	NO	•						pulse
3439		VAR	Pn725 Electronic Gear Ratio (Numerator)	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
343A		VAR	Pn726 Electronic Gear Ratio (Denominator)	INT32	RW	NO	•						
3484		VAR	Pn800 Motor Applied Settings 1	INT32	RW	NO	•						
3485		VAR	Pn801 Motor Applied Settings 2	INT32	RW	NO	•						
3486		VAR	Pn802 Encoder Initial Value	INT32	RW	NO	•						
3488		VAR	Pn804 Motor Serials Selection	INT32	RW	NO	•						
3489		VAR	Pn805 Motor Module Selection	INT32	RW	NO	•						
348A		VAR	Pn806 Motor Voltage Class	INT32	RW	NO	•						
348B		VAR	Pn807 Motor Power	INT32	RW	NO	•						W
348C		VAR	Pn808 Motor Temperature Sensor Model	INT32	RW	NO	•						
348D		VAR	Pn809 Motor Derating Factor	INT32	RW	NO	•						0.01Tn
348E		VAR	Pn810 Motor Rated Torque	INT32	RW	NO	•						0.01Nm
348F		VAR	Pn811 Motor Maximum Torque	INT32	RW	NO	•						0.01Nm
3490		VAR	Pn812 Motor Reated Current	INT32	RW	NO	•						0.1A
3491		VAR	Pn813 Motor Maximum Curren	INT32	RW	NO	•						0.1A
3492		VAR	Pn814 Motor Reated Speed	INT32	RW	NO	•						rpm
3493		VAR	Pn815 Motor Maximum Speed	INT32	RW	NO	•						rpm
3494		VAR	Pn816 Motor Ultimate Speed	INT32	RW	NO	•						rpm
3495		VAR	Pn817 a0*10000	INT32	RW	NO	•						
3496		VAR	Pn818 a1*10000	INT32	RW	NO	•						
3497		VAR	Pn819 a2*10000	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3498		VAR	Pn820 a3*10000	INT32	RW	NO	•						
3499		VAR	Pn821 a4*10000	INT32	RW	NO	•						
349A		VAR	Pn822 b0*10000	INT32	RW	NO	•						
349B		VAR	Pn823 b1*10000	INT32	RW	NO	•						
349C		VAR	Pn824 b2*10000	INT32	RW	NO	•						
349D		VAR	Pn825 b3*10000	INT32	RW	NO	•						
349E		VAR	Pn826 b4*10000	INT32	RW	NO	•						
349F		VAR	Pn827 Opposing EMF Factor (Ke)	INT32	RW	NO	•						0.01V/Krpm
34A0		VAR	Pn828 Phase Resistance (Rs)	INT32	RW	NO	•						0.001Ω
34A1		VAR	Pn829 Ld	INT32	RW	NO	•						0.1mH
34A2		VAR	Pn830 Lq	INT32	RW	NO	•						0.1mH
34A3		VAR	Pn831 Moment of Inertia for Motor	INT32	RW	NO	•						1e-8Kgm^2
34A4		VAR	Pn832 Pole Number	INT32	RW	NO	•						
34A5		VAR	Pn833 Electrical Time Constant (te)	INT32	RW	NO	•						0.01ms
34A6		VAR	Pn834 Mechanical Time Constant (tm)	INT32	RW	NO	•						0.01ms
34A7		VAR	Pn835 Thermal Time Constant (th)	INT32	RW	NO	•						0.01ms
34A8		VAR	Pn836 Thermal Model Parameters Tp[0]*10000	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
34A9		VAR	Pn837 Thermal Model Parameters Tp[1]*10000	INT32	RW	NO	•						
34AA		VAR	Pn838 Thermal Model Parameters Tp[2]*10000	INT32	RW	NO	•						
34AB		VAR	Pn839 Thermal Model Parameters Tp[3]*10000	INT32	RW	NO	•						
34AC		VAR	Pn840 Thermal Model Parameters Tp[4]*10000	INT32	RW	NO	•						
34AD		VAR	Pn841 Motor Overload Curve Coefficient k[0]*10000	INT32	RW	NO	•						
34AE		VAR	Pn842 Motor Overload Curve Coefficient k[1]*10000	INT32	RW	NO	•						
34AF		VAR	Pn843 Motor Overload Curve Coefficient k[2]*10000	INT32	RW	NO	•						
34B0		VAR	Pn844 Motor Overload Curve Coefficient k[3]*10000	INT32	RW	NO	•						
34B1		VAR	Pn845 Motor Overload Curve Coefficient k[4]*10000	INT32	RW	NO	•						
34CF		VAR	Pn875 Application Function Select	INT32	RW	NO	•						
34D1		VAR	Pn877 Encoder Protocol Selection	INT32	RW	NO	•						
34D2		VAR	Pn878 Encoder Type Selection	INT32	RW	NO	•						
34D3		VAR	Pn879 Encoder Actual Resolution	INT32	RW	NO	•						
34D4		VAR	Pn880 Encoder Resolution for Program Using	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
34D5		VAR	Pn881 Encoder Resolution for Multi-turn Data	INT32	RW	NO	•						
34D9		VAR	Pn885 Servodrive Applied Setting	INT32	RW	NO	•						
34E3		VAR	Pn895 Alarm Masks 7	INT32	RW	NO	•						
34F6		VAR	Pn914 Asynchronous Drive Amplitude (Uq)	INT32	RW	NO	•						‰
34F7		VAR	Pn915 Asynchronous Drive Frequency	INT32	RW	NO	•						
34F8		VAR	Pn916 Current Loop Bandwidth	INT32	RW	NO	•						Hz
34F9		VAR	Pn917 Dead Zone Compensation Percentage	INT32	RW	NO	•						%
34FC		VAR	Pn920 Function Selection for Test	INT32	RW	NO	•						
34FD		VAR	Pn921 Test Mode Settings	INT32	RW	NO	•						
34FE		VAR	Pn922 Current loop step test Id given percentage	INT32	RW	NO	•						%
34FF		VAR	Pn923 Iq Given Percentage for Current Loop Step Test	INT32	RW	NO	•						%
3501		VAR	Pn925 Current loop frequency response test Iq given offset percentage	INT32	RW	NO	•						%
3502		VAR	Pn926 Current loop frequency response test Iq given amplitude percentage	INT32	RW	NO	•						%
3504		VAR	Pn928 Speed loop frequency response test speed given offset	INT32	RW	NO	•						rpm

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
3505		VAR	Pn929 Speed loop frequency response test speed given amplitude	INT32	RW	NO	•						rpm
3507		VAR	Pn931 DA output voltage amplitude in frequency response test mode	INT32	RW	NO	•						0.1V
3508		VAR	Pn932 Sweep frequency	INT32	RW	NO	•						Hz
350B		VAR	Pn935 One Volt Corresponding Pulse Number	INT32	RW	NO	•						
350C		VAR	Pn936 Output Voltage Scale Factor in Position Loop Frequency Response Test	INT32	RW	NO	•						
350D		VAR	Pn937 Output Voltage Offset in Position Loop Frequency Response Test	INT32	RW	NO	•						
350F		VAR	Pn939 STO Function Selection	INT32	RW	NO	•						
3510		VAR	Pn940 Interrupt Cycle Time	INT32	RW	NO	•						
3511		VAR	Pn941 EM3A Motor Flux- weakening Selection	INT32	RW	NO	•						
3512		VAR	Pn942 Flux-weakening PI Regulator (kp)	INT32	RW	NO	•						0.01
3513		VAR	Pn943 Flux-weakening PI Regulator (ki)	INT32	RW	NO	•						0.1
3514		VAR	Pn944 Mechanical Analyzer Order	INT32	RW	NO	•						
351A		VAR	Pn950 Overmodulation Selection	INT32	RW	NO	•						
351B		VAR	Pn951 Tz Selection	INT32	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
351C		VAR	Pn952 Amplifying Tmax, Pn401/Pn402	INT32	RW	NO	•						0.01
351D		VAR	Pn953 Motor Amplified (Imax)	INT32	RW	NO	•						0.01
351E		VAR	Pn954 Alarm Self-test Selection	INT32	RW	NO	•						
351F		VAR	Pn955 Bus Voltage Correction	INT32	RW	NO	•						V
3521		VAR	Pn957 ePWM forced synchronization enable bit in EC mode Validate After Restart	INT32	RW	NO	•						
3524		VAR	Pn960 Alarm Masks 1	INT32	RW	NO	•						
3525		VAR	Pn961 Alarm Masks 2	INT32	RW	NO	•						
3526		VAR	Pn962 Alarm Masks 3	INT32	RW	NO	•						
3527		VAR	Pn963 Alarm Masks 4	INT32	RW	NO	•						
3528		VAR	Pn964 Alarm Masks 5	INT32	RW	NO	•						
3529		VAR	Pn965 Alarm Masks 6	INT32	RW	NO	•						
			EncAlmClrVar				•						
3685	0	ARRAY	number_of_entries	UINT8	RO	NO	•						
3083	1	AKKAI	ClrAllEncAlm	UINT16	RW	NO	•						
	2		ClrMultiEncAlm	UINT16	RW	NO	•						
603F		VAR	Error_code	UINT16	RO	YES	•						
6040		VAR	controlword	UINT16	RW	YES	•						
6041		VAR	statusword	UINT16	RO	YES	•						
605A		VAR	quick_stop_option_code	INT16	RW	NO	•						

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	oort					Unit
							All	IP	PP	PV	PT	НМ	
605B		VAR	shutdown_option_code	INT16	RW	NO	•						
605C		VAR	disable_operation_option_code	INT16	RW	NO	•						
605D		VAR	stop_option_code	INT16	RW	NO	•						
605E		VAR	fault_reaction_option_code	INT16	RW	NO	•						
6060		VAR	modes_of_operation	UINT8	RW	YES	•						
6061		VAR	modes_of_operation_display	UINT8	RO	YES	•						
6062		VAR	position_demand_value	INT32	RO	YES			•				position units
6063		VAR	position_actual_value*	INT32	RO	YES			•				inc
6064		VAR	position_actual_value	INT32	RO	YES		•	•		•	•	position units
6065		VAR	following_error_window	UINT32	RW	YES			•				position units
6066		VAR	following_error_time_out	UINT16	RW	YES			•				ms
6067		VAR	position_window	UINT32	RW	YES			•				position units
6068		VAR	position_window_time	UINT16	RW	YES			•				ms
6069		VAR	velocity_sensor_actual_value	INT32	RO	YES				•			speed units
606B		VAR	velocity_demand_value	INT32	RO	YES				•			speed units
606C		VAR	velocity_actual_value	INT32	RO	YES	•						speed units
606D		VAR	velocity_window	UINT16	RW	YES				•			speed units
606E		VAR	velocity_window_time	UINT16	RW	YES				•			ms
606F		VAR	velocity_threshold	UINT16	RW	YES				•			speed units
6070		VAR	velocity_threshold_time	UINT16	RW	YES				•			ms
6071		VAR	target_torque	INT16	RW	YES					•		0.1% Tn

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	ort					Unit
							All	IP	PP	PV	PT	НМ	
6072		VAR	Max_torque	UINT16	RW	YES					•		0.1% Tn
6074		VAR	torque_demand_value	INT16	RO	YES					•		0.1% Tn
6077		VAR	torque_actual_value	INT32	RO	YES		•	•		•		0.1% Tn
6078		VAR	Current actual value	INT16	RO	YES		•	•		•		0.1%In
607A		VAR	target_position	INT32	RW	YES			•				position units
607C		VAR	home_offset	INT32	RW	YES	•						position units
			Software_position_limit						•				
607D	0	ARRAY	number_of_entries	UINT8	RW	NO			•				
007D	1	AKKAI	min_soft_position_limit	INT32	RW	NO			•				position units
	2		max_soft_position_limit	INT32	RW	NO			•				position units
607E		VAR	polarity	UINT8	RW	YES	•						position units
607F		VAR	Max_profile_velocity	UINT32	RW	YES			•	•			speed units
6080		VAR	Max motor speed	UINT32	RW	YES			•				rpm
6081		VAR	profile_velocity	UINT32	RW	YES			•				speed units
6082		VAR	end_velocity	UINT32	RW	YES			•				speed units
6083		VAR	profile_acceleration	UINT32	RW	YES			•	•			acceleration units
6084		VAR	profile_deceleration	UINT32	RW	YES			•	•			acceleration units
6085		VAR	quick_stop_deceleration	UINT32	RW	YES			•	•			acceleration units
6086		VAR	motion_profile_type	INT16	RW	YES			•				
6087		VAR	torque_slope	UINT32	RW	YES					•		0.1%Tn/S
6093		ARRAY	position_factor				•		•		•	•	

Index	Subindex	Object	Name	Туре	Attr.	PDO	Support						Unit
							All	IP	PP	PV	PT	НМ	
	0		number_of_entries	UINT32	RW	NO	•		•		•	•	
	1		numerator	UINT32	RW	NO	•		•		•	•	
	2		divisor	UINT32	RW	NO	•		•		•	•	
			velocity_encoder_factor				•						
6094	0	ADDAV	number_of_entries	UINT32	RW	NO	•						
0094	1	ARRAY	numerator	UINT32	RW	NO	•						
	2		divisor	UINT32	RW	NO	•						
6097		ARRAY	acceleration_factor				•						
	0		number_of_entries	UINT8	RW	NO	•						
	1		numerator	UINT32	RW	NO	•						
	2		divisor	UINT32	RW	NO	•						
6098		VAR	homing_method	INT8	RW	YES						•	
		ARRAY	homing_speeds									•	
6099	0		number_of_entries	UINT8	RO	NO						•	
6099	1		speed_during_search_for_switch	UINT32	RW	YES						•	speed units
	2		speed_during_search_for_zero	UINT32	RW	YES						•	speed units
609A		VAR	homing_acceleration	UINT32	RW	YES						•	0.1rpm/s
60A4		ARRAY	profile_jerk					•	•				
	0		number_of_entries	UINT8	RO	NO		•	•				
	1		profile_jerk1	UINT32	RW	YES		•	•				pulse/s/s/125us
60B1		VAR	VelocityOffset	INT32	RW	YES	•						speed units

Index	Subindex	Object	Name	Туре	Attr.	PDO	Support						Unit
							All	IP	PP	PV	PT	НМ	
60B2		VAR	TorqueOffset	INT16	RW	YES	•						0.1%Tn
60B8		VAR	Touch Probe Function	UINT16	RW	YES	•						
60B9		VAR	Touch Probe Status	UINT16	RO	YES	•						
60BA		VAR	Touch Probe Pos1 Pos Value	INT32	RO	YES	•						pulse
60BB		VAR	Touch Probe Pos1 Neg Value	INT32	RO	YES	•						pulse
60BC		VAR	Touch Probe Pos2 Pos Value	INT32	RO	YES	•						pulse
60BD		VAR	Touch Probe Pos2 Neg Value	INT32	RO	YES	•						pulse
60C0		VAR	Interpolation sub mode select	INT16	RW	NO	•						
		- ARRAY	Interpolation data record										
60C1	0		number_of_entries	UINT8	RO	NO		•					
0001	1		Interpolation data record1	INT32	RW	YES		•					pulse
	2		Interpolation data record2	INT32	RW	NO		•					pulse
		ARRAY	Interpolation_Time										
60C2	0		number_of_entries	UINT8	RO	NO		•					
0002	1		Interpolation_Time_Unit	UINT8	RW	NO		•					
	2		Interpolation_Time_Index	INT8	RW	NO		•					
60C5		VAR	Max_acceleration	UINT32	RW	YES	•						0.1rpm/s
60C6		VAR	Max_deceleration	UINT32	RW	YES	•						0.1rpm/s
60E0		VAR	PosTorLimit	UINT16	RW	YES	•						%0.1Tn
60E1		VAR	NegTorLimit	UINT16	RW	YES	•						%0.1Tn
60F4		VAR	Following_error_actual_value	INT32	RO	YES		•					pulse

Index	Subindex	Object	Name	Туре	Attr.	PDO	Supp	Support		Unit			
							All	IP	PP	PV	PT	НМ	
60FA		VAR	control_effort	INT32	RO	YES		•				•	
60FC		VAR	position_demand_value*	INT32	RO	YES		•				•	pulse
60FD		VAR	digital_intputs	UINT32	RO	YES	•						
		ARRAY	digital_outputs										
60FE	0		number_of_entries	UINT8	RO	NO	•						
OUFE	1		physical_outputs	UINT32	RW	YES	•						
	2		bit_mask	UINT32	RW	NO	•						
60FF		VAR	target_velocity	INT32	RW	YES				•			speed units
6502		VAR	Supported drive modes	UINT32	RO	NO	•						

Revision History

No	Date	Version	Revised Contents
1	Jul, 2021	V1.00	Initial release.
2	2022-3-10	V1.02	Add information on 400VAC drives
3	2022-3-25	V1.03	Initial release.

ESTUN AUTOMATION CO.,LTD.

No.1888, Jiyin Road, Jiangning Development Zone, Nanjing, P.R.China No.16, Shuige Road, Jiangning Development Zone, Nanjing, P.R.China No.178, Yanhu Road, Jiangning Development Zone, Nanjing, P.R.China

No.155, Jiangjun Avenue, Jiangning Development Zone, Nanjing, P.R.China

- **%** +86-25-52785866
- 母 +86-25-52785966

Wechat

Website

Service Hotline 400 025 3336